Skip to main content
Log in

On the Semitopological Extended Bicyclic Semigroup with Adjoined Zero

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

It is shown that every Hausdorff locally compact semigroup topology on the extended bicyclic semigroup with adjoined zero \( {C}_{\mathrm{\mathbb{Z}}}^0 \) is discrete. At the same time, on \( {C}_{\mathrm{\mathbb{Z}}}^0 \), there exist 𝔠 different Hausdorff locally compact shift-continuous topologies. In addition, on \( {C}_{\mathrm{\mathbb{Z}}}^0 \), we construct a unique minimal shift-continuous topology and a unique minimal inverse semigroup topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. V. Gutik, “Any topological semigroup is topologically isomorphically embedded into a simple path-connected topological semigroup”, in: Algebra and Topology” [in Ukrainian], Lviv Univ. Press, Lviv (1996), pp. 65–73.

  2. O. Andersen, Ein Bericht Über die Struktur Abstrakter Halbgruppen, PhD Thesis, Hamburg (1952).

  3. L. W. Anderson, R. P. Hunter, and R. J. Koch, “Some results on stability in semigroups,” Trans. Amer. Math. Soc., 117, 521–529 (1965); https://doi.org/https://doi.org/10.1090/S0002-9947-1965-0171869-7.

  4. T. Banakh, S. Dimitrova, and O. Gutik, “Embedding the bicyclic semigroup into countably compact topological semigroups,” Topology Appl., 157, No. 18, 2803–2814 (2010); https://doi.org/https://doi.org/10.1016/j.topol.2010.08.020.

  5. T. Banakh, S. Dimitrova, and O. Gutik, “The Rees–Suschkiewitsch theorem for simple topological semigroups,” Mat. Studii, 31, No. 2, 211–218 (2009).

    MathSciNet  MATH  Google Scholar 

  6. B. Banaschewski, “Minimal topological algebras,” Math. Ann., 211, No. 2, 107–114 (1974); https://doi.org/https://doi.org/10.1007/BF01344165.

  7. S. Bardyla, “Classifying locally compact semitopological polycyclic monoids,” Mat. Visn. NTSh, 13, 21–28 (2016).

    MATH  Google Scholar 

  8. S. Bardyla, “On locally compact semitopological graph inverse semigroups,” Mat. Studii, 49, No. 1, 19–28 (2018); https://doi.org/https://doi.org/10.15330/ms.49.1.19-28.

  9. S. Bardyla and O. Gutik, “On the lattice of weak topologies on the bicyclic monoid with adjoined zero”, Algebra Discr. Math., 30, No. 1, 26–43 (2020); https://doi.org/https://doi.org/10.12958/adm1459.

  10. S. Bardyla and A. Ravsky, “Closed subsets of compact-like topological spaces”, Appl. General Topol., 21, No. 2, 201-214, (2020); https://doi.org/https://doi.org/10.4995/agt.2020.12258.

  11. M. P. Berri, J. R. Porter, and Jr. R. M. Stephenson, “A survey of minimal topological spaces,” in: S. P. Franklin, Z. Frolík, V. Koutník (editors), General Topology and Its Relations to Modern Analysis and Algebra: Proc. of the Kanpur Topological Conference (1968), Academia Publishing House, Czechoslovak Academy of Sciences, Prague (1971), pp. 93–114.

  12. M. O. Bertman and T. T. West, “Conditionally compact bicyclic semitopological semigroups,” Proc. Roy. Irish Acad., A76, No. 21-23, 219–226 (1976).

    MathSciNet  MATH  Google Scholar 

  13. J. H. Carruth, J. A. Hildebrant, and R. J. Koch, The Theory of Topological Semigroups, Marcell Dekker, New York etc.; Vol. 1 (1983), Vol. 2 (1986).

  14. A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Vol. 1, Amer. Math. Soc., Providence, RI (1961), Vol. 2 (1972).

  15. D. Doîtchinov, “Produits de groupes topologiques minimaux,” Bull. Sci. Math. Sér. 2, 97, 59–64 (1972).

    MathSciNet  MATH  Google Scholar 

  16. C. Eberhart and J. Selden, “On the closure of the bicyclic semigroup,” Trans. Amer. Math. Soc., 144, 115–126 (1969); https://doi.org/https://doi.org/10.1090/S0002-9947-1969-0252547-6.

  17. R. Engelking, General Topology, Heldermann, Berlin (1989).

    MATH  Google Scholar 

  18. I. R. Fihel and O. V. Gutik, “On the closure of the extended bicyclic semigroup,” Karp. Mat. Publ., 3, No. 2, 131–157 (2011).

    MATH  Google Scholar 

  19. O. Gutik, “On locally compact semitopological 0-bisimple inverse ω -semigroups,” Topol. Algebra Appl., 6, 77–101 (2018); https://doi.org/https://doi.org/10.1515/taa-2018-0008.

  20. O. Gutik, “On the dichotomy of a locally compact semitopological bicyclic monoid with adjoined zero,” Visn. Lviv. Univ. Ser. Mekh.-Mat., Issue 80 (2015), pp. 33–41.

  21. O. Gutik and K. Maksymyk, “On semitopological interassociates of the bicyclic monoid,” Visn. Lviv. Univ. Ser. Mekh.-Mat., Issue 82 (2016), pp. 98–108.

  22. O. Gutik and K. Maksymyk, “On variants of the bicyclic extended semigroup,” Visn. Lviv. Univ. Ser. Mekh.-Mat., Issue 84 (2017), pp. 22–37.

  23. O. Gutik and K. Pavlyk, “On topological semigroups of matrix units,” Semigroup Forum, 71, No. 3, 389–400 (2005); https://doi.org/https://doi.org/10.1007/s00233-005-0530-0.

  24. O. Gutik and D. Repovš, “On countably compact 0-simple topological inverse semigroups,” Semigroup Forum, 75, No. 2, 464–469 (2007); https://doi.org/https://doi.org/10.1007/s00233-007-0706-x.

  25. J. A. Hildebrant and R. J. Koch, “Swelling actions of Γ -compact semigroups,” Semigroup Forum, 33, 65–85 (1986); https://doi.org/https://doi.org/10.1007/BF02573183.

  26. J. L. Kelley, General Topology, Springer-Verlag, New York (1975).

    MATH  Google Scholar 

  27. R. J. Koch and A. D. Wallace, “Stability in semigroups,” Duke Math. J., 24, No. 2, 193–195 (1957); https://doi.org/https://doi.org/10.1215/S0012-7094-57-02425-0.

  28. M. V. Lawson, Inverse Semigroups. The Theory of Partial Symmetries, World Scientific, Singapore (1998).

  29. L. Nachbin, “On strictly minimal topological division rings,” Bull. Amer. Math. Soc., 55, No. 12, 1128–1136 (1949); https://doi.org/https://doi.org/10.1090/S0002-9904-1949-09339-4.

  30. M. Petrich, Inverse Semigroups, John Wiley & Sons, New York (1984).

    MATH  Google Scholar 

  31. W. Ruppert, Compact Semitopological Semigroups: An Intrinsic Theory, Lect. Notes Math., 1079, Springer, Berlin (1984).

  32. Jr. R. M. Stephenson, “Minimal topological groups,” Math. Ann., 192, No. 3, 193–195 (1971); https://doi.org/https://doi.org/10.1007/BF02052870.

  33. R. J. Warne, “I-bisimple semigroups,” Trans. Amer. Math. Soc., 130, No. 3, 367–386 (1968); https://doi.org/https://doi.org/10.1090/S0002-9947-1968-0223476-8.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Gutik.

Additional information

Published in Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 62, No. 4, pp. 28–38, October–December, 2019.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutik, O.V., Maksymyk, K.M. On the Semitopological Extended Bicyclic Semigroup with Adjoined Zero. J Math Sci 265, 369–381 (2022). https://doi.org/10.1007/s10958-022-06058-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-022-06058-6

Keywords

Navigation