Skip to main content
Log in

The Cyclical Compactness in Banach C(Q)-Modules

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper we study the class of laterally complete commutative unital regular algebras A over arbitrary fields. We introduce a notion of passport Γ(X) for a faithful regular laterally complete Amodules X, which consist of uniquely defined partition of unity in the Boolean algebra of all idempotents in A and of the set of pairwise different cardinal numbers. We prove that A-modules X and Y are isomorphic if and only if Γ(X) = Γ(Y). Further we study Banach A-modules in the case A = C(Q) or A = C(Q)+i ·C(Q). We establish the equivalence of all norms in a finite-dimensional (respectively, σ-finite-dimensional) A-module and prove an A-version of Riesz Theorem, which gives the criterion of a finite-dimensionality (respectively, σ-finite-dimensionality) of a Banach A-module.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. K. Berberian, “The regular ring of a finite AW*-algebra,” Ann. Math., 65, No. 2, 224–240 (1957).

    Article  MathSciNet  Google Scholar 

  2. V. I. Chilin, “Partially ordered Baer involutive algebras,” Totals Sci. Tech. Ser. Contemp. Probl. Math. New Progr., 27, 99–128 (1985).

    MathSciNet  Google Scholar 

  3. V. I. Chilin and J. A. Karimov, “Disjunct complete C(Q)-modules,” Vladikavkaz Math. Zh., 16, No 2., 69–78 (2014).

    MATH  Google Scholar 

  4. V. I. Chilin and J. A. Karimov, “Strictly homogeneous laterally complete modules,” J. Phys. Conf. Ser., 697 (2016).

  5. A. N. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Am. Math. Soc., Providence (1961).

  6. I. G. Ganiev and K. K. Kudaybergenov, “Finite dimensional modules over the ring of measurable functions,” Uzbek Math. Zh., No. 4, 3–9 (2004).

    MathSciNet  Google Scholar 

  7. J. Kaplansky, “Projections in Banach algebras,” Ann. Math, 53, 235–249 (1951).

    Article  MathSciNet  Google Scholar 

  8. J. Kaplansky, “Algebras of type I,” Ann. Math, 56, 450–472 (1952).

    Article  Google Scholar 

  9. J. Kaplansky, “Modules over operator algebras,” Amer. J. Math, 75, No. 4, 839–858 (1953).

    Article  MathSciNet  Google Scholar 

  10. J. A. Karimov, “Kaplansky–Hilbert modules over the algebra of measurable functions,” Uzbek math. Zh., No. 4, 74–81 (2010).

  11. J. A. Karimov, “Equivalence of norms in finite dimensional C(Q)-modules,” Bull. Nat. Univ. Uzbek., No. 2/1, 100-108 (2017).

    Google Scholar 

  12. A. G. Kusraev, Vector Duality and Its Applications [in Russian], Nauka, Novosibirsk (1985).

    MATH  Google Scholar 

  13. A. G. Kusraev, Dominated Operators, Kluwer, Dordrecht (2000).

    Book  Google Scholar 

  14. F. Maeda, Kontinuierliche Geometrien, Springer, Berlin–Heidelberg (1958).

  15. M. A. Muratov and V. I. Chilin, Algebra of Measurable and Locally Measurbale Operators [in Russian], Inst. mat. NAN Ukr., Kiev (2007).

  16. K. Saito, “On the algebra of measurable operators for a general AW*-algebra, I,” Tohoku Math. J., 21, No. 2, 249–270 (1969).

    Article  MathSciNet  Google Scholar 

  17. K. Saito, “On the algebra of measurable operators for a general AW*-algebra, II,” Tohoku Math. J., 23, No. 3, 525–534 (1971).

    MathSciNet  Google Scholar 

  18. I. Segal, “A noncommutative extension of abstract integration,” Ann. Math., 57, No. 3, 401–457 (1953).

    Article  MathSciNet  Google Scholar 

  19. L. A. Skornyakov, Dedekind Complemented Structures and Regular Rings [in Russian], Fizmatgiz, Moscow (1961).

    Google Scholar 

  20. B. L. Van Der Waerdenm, Algebra. Vol. II, Springer, New York (1991).

    Book  Google Scholar 

  21. B. Z. Vulikh, Introduction to the Theory of Partially Ordered Spaces, Wolters-Noordhoff Sci. Publ., Groningen (1967).

    MATH  Google Scholar 

  22. F. J. Yeadon, “Convergence of measurable operators,” Math. Proc. Cambridge Philos. Soc., 74, No. 2, 257–268 (1973).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Chilin.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 65, No. 1, Contemporary Problems in Mathematics and Physics, 2019.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chilin, V.I., Karimov, J.A. The Cyclical Compactness in Banach C(Q)-Modules. J Math Sci 265, 129–145 (2022). https://doi.org/10.1007/s10958-022-06050-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-022-06050-0

Navigation