Skip to main content
Log in

Carleman’s Formula for Solutions of Generalized Cauchy–Riemann Systems in Multidimensional Spatial Domains

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we consider the restoration problem for solutions of the generalized Cauchy–Riemann system in a multidimensional spatial domain, using their values on a piece of the boundary of the domain, i.e., the Cauchy problem. We construct an approximate solution of this problem based on the Carleman matrix method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Bers, F. John, and M. Schechter, Partial Differential Equations [Russian translations], Mir, Moscow (1966).

    Google Scholar 

  2. F. Brackx, K. Delanghe, and F. Sommen, Clifford Analysis, Pitman, Boston–London–Melbourne (1982).

    MATH  Google Scholar 

  3. M. M. Dzharbashyan, Integral Transformations and Representations of Functions in Complex Domain [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  4. L. A. Eisenberg, Carleman’s Formulas in Complex Analysis. First Applications [in Russian], Nauka, Novosibirsk (1990).

    Google Scholar 

  5. L. A. Eisenberg and N. N. Tarkhanov, “Abstract Carlemans Formula,” Rep. Acad. Sci. USSR, 298, No. 6, 1292–1296 (1988).

    MathSciNet  Google Scholar 

  6. J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations of Hyperbolic Type [Russian translation], Nauka, Moscow (1978).

    Google Scholar 

  7. T. I. Ishankulov, “On generalized analytic continuation into the domain for functions defined on a part of its boundary,” Siberian Math. J. , 41, No. 6, 1350–1356 (2000).

    Article  MathSciNet  Google Scholar 

  8. V. K. Ivanov, “The Cauchy problem for the Laplace equations in infinite strip,” Differ. Equ., 1, No. 1, 131–136 (1965).

    MathSciNet  Google Scholar 

  9. M. M. Lavrent’ev, “On the Cauchy problem for second-order linear elliptic equations,” Rep. Acad. Sci. USSR,112, No. 2, 195–197 (1957).

  10. M. M. Lavrent’ev, On Some Ill-Posed Problems of Mathematical Physics [in Russian], VTS SO AN SSSR, Novosibirsk (1962).

  11. O. I. Makhmudov, “The Cauchy problem for a system of equations from the elasticity and thermoelasticity theory in the space,” Bull. Higher Edu. Inst. Ser. Math., 501, No. 2, 43–53 (2004).

    Google Scholar 

  12. O. Makhmudov, I. Niyozov, and N. Tarkhanov, “The Cauchy problem of couple-stress elasticity,” Contemp. Math., 455, 297–310 (2008).

    Article  MathSciNet  Google Scholar 

  13. S. N. Mergelyan, “Harmonic approximation and approximate solution of the Cauchy problem for the Laplace equation,” Progr. Math. Sci., 11, No. 5, 3–26 (1956).

    MathSciNet  Google Scholar 

  14. L. F. Nikiforov and V. B. Uvarov, Foundations of the Theory of Special Functions [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  15. E. I. Obolashvili, “Spatial analog of generalized analytic functions,” Rep. Acad. Sci. Georgian SSR, 73, No. 1, 20–24 (1974).

    MathSciNet  Google Scholar 

  16. E. I. Obolashvili, “Generalized Cauchy–Riemann system in multidimensional Euclidean space,” Proc. Int. Conf. Compl. Anal. Appl. Part. Differ. Equ., Galle, Germany, 18–24 Oct. 1976, pp. 36–39 (1977).

  17. E. I. Obolashvili, “Generalized Cauchy–Riemann system in multidimensional space,” Proc. Tbilisi Math. Inst., 58, 168–173 (1978).

    MATH  Google Scholar 

  18. E. N. Sattorov, “Regularization of solution of the Cauchy problem for the generalized Moisil–Theodorescu system,” Differ. Equ., 44, No. 8, 1100–1110 (2008).

    Article  MathSciNet  Google Scholar 

  19. E. N. Sattorov, “On continuation of solutions of the generalized Cauchy–Riemann system in the space,” Math. Notes, 85, No. 5, 768–781 (2009).

    MathSciNet  MATH  Google Scholar 

  20. E. N. Sattorov, “Regularization of solution of the Cauchy problem for the Maxwell system of equations in infinite domain,” Math. Notes, 86, No. 6, 445–455 (2009).

    MathSciNet  Google Scholar 

  21. E. N. Sattorov, “On restoration of solutions of the generalized Moisil–Theodorescu system in a spatial domain by their values of a part of the boundary,” Bull. Higher Edu. Inst. Ser. Math., 1, 72–84 (2011).

    Google Scholar 

  22. E. N. Sattorov and Dzh. A. Mardonov, “The Cauchy problem for the Maxwell system of equations,” Siberian Math. J., 44, No. 4, 851–861 (2003).

    Article  MathSciNet  Google Scholar 

  23. E. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces [Russian translation], Mir, Moscow (1974).

    Google Scholar 

  24. N. N. Tarkhanov, “On the Carleman matrix for elliptic systems,” Rep. Acad. Sci. USSR, 284, No. 2, 294–297 (1985).

    MathSciNet  MATH  Google Scholar 

  25. N. N. Tarkhanov, Cauchy Problem for Solutions of Elliptic Equations, Akademie-Verlag, Berlin (1995).

    MATH  Google Scholar 

  26. A. N. Tikhonov, “On solution of ill-posed problems and the regularization method,” Rep. Acad. Sci. USSR, 151, No. 3, 501–504 (1963).

    Google Scholar 

  27. F. Tricomi, Lezioni Sulle Equazioni a Derivate Parziali [Russian translation], IL, Moscow (1957).

    Google Scholar 

  28. I. N. Vekua, Generalized Analytic Functions [in Russian], Fizmatgiz, Moscow (1988).

    MATH  Google Scholar 

  29. V. S. Vladimirov and I. V. Volovich, “Superanalysis I. Differential Calculus,” Theor. Math. Phys., 59, No. 1, 3–27 (1984).

    Article  MathSciNet  Google Scholar 

  30. V. S. Vladimirov and I. V. Volovich, “Superanalysis II. Integral Calculus,” Theor. Math. Phys., 60, No. 2, 169–198 (1984).

    Article  MathSciNet  Google Scholar 

  31. Sh. Yarmukhamedov, “On the Cauchy problem for the Laplace equation,” Rep. Acad. Sci. USSR, 235, No. 2, 281–283 (1977).

    MathSciNet  MATH  Google Scholar 

  32. Sh. Yarmukhamedov, “On analytic continuation of a holomorphic vector by its boundary values on a part of the boundary,” Bull. Acad. Sci. Uzbek SSR. Ser. Phys.-Math. Sci., 6, 34–40 (1980).

    MATH  Google Scholar 

  33. Sh. Yarmukhamedov, “On continuation of solution of the Helmholtz equation,” Rep. Russ. Acad. Sci., 357, No. 3, 320–323 (1997).

    MathSciNet  MATH  Google Scholar 

  34. Sh. Yarmukhammedov, “Carleman’s function and the Cauchy problem for the Laplace equation,” Siberian Math. J., 45, No. 3, 702–719 (2004).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Sattorov.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 65, No. 1, Contemporary Problems in Mathematics and Physics, 2019.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sattorov, E.N., Ermamatova, F.E. Carleman’s Formula for Solutions of Generalized Cauchy–Riemann Systems in Multidimensional Spatial Domains. J Math Sci 265, 90–102 (2022). https://doi.org/10.1007/s10958-022-06047-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-022-06047-9

Navigation