Skip to main content
Log in

Restrictions on Parameters of Minimal Supersymmetric Standard Model

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The Higgs boson with mass mh = 126 GeV was discovered at the Large Hadron Collider in 2012. Its mass corresponds both to the Standard Model of elementary-particles physics and to the mass of the most lightweight Higgs boson in the minimal supersymmetric standard model (MSSM). In this paper, we consider MSSM that does not preserve the CP-invariance and contains a large amount of parameters to be varied. Using the experimental value of the Higgs boson mass, we obtain restrictions on the parameters of the model, determine phenomenological scenarios, and analyze possible areas of the space of parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Aihara et al., “The eighth data release of the Sloan Digital Sky Survey: first data from SDSSIII,” Astrophys. J. Suppl. Ser., 193, No. 2, https://doi.org/10.1088/0067-0049/193/2/29 (2011).

  2. E. N. Akhmetzyanova, M. V. Dolgopolov, and M. N. Dubinin, “Higgs bosons in the two-doublet model with CP violation,” Phys. Rev. D, 71, No. 7, 075008 (2005).

  3. E. N. Akhmetzyanova, M. V. Dolgopolov, and M. N. Dubinin, “Higgs bosons in the two-doublet model involving CP violation,” Phys. Atom. Nucl., 68, No. 11, 1851–1865 (2005).

    Article  Google Scholar 

  4. E. N. Akhmetzyanova, M. V. Dolgopolov, and M. N. Dubinin, “Self-couplings of Higgs bosons in the scenarios with CP-even/CP-odd mixing,” In: CP studies and non-standard Higgs physics. Proc. of CERN Workshop, CERN, Geneva, pp. 133–139 (2006)

  5. E. N. Akhmetzyanova, M. V. Dolgopolov, and M. N. Dubinin, “Violation of CP invariance in the two-doublet Higgs sector of the MSSM,” Phys. Part. Nucl., 37, 677–734 (2006).

    Article  Google Scholar 

  6. W. de Boer, “Grand unified theories and supersymmetry in particle physics and cosmology,” Prog. Part. Nucl. Phys., 33, 201–301 (1994).

    Article  Google Scholar 

  7. A. D. Dolgov, S. H. Hansen, S. Pastor, and D. V. Semikoz, “Unstable massive tau-neutrinos and primordial nucleosynthesis,” Nucl. Phys. B, 548, No. 1–3, 385–407 (1999).

    Article  Google Scholar 

  8. M. N. Dubinin and E. Yu. Petrova, “Simplified parametric scenarios of MSSM after the Higgs boson discovery”, Yader. Fiz., 79, No. 4, 302–314 (in Russian) (2017).

  9. M. N. Dubinin and A. V. Semenov, “Triple and quartic interactions of Higgs bosons in the two-Higgs-doublet model with CP violation,” Eur. Phys. J., 28, No. 2, 223–236 (2003).

    Article  Google Scholar 

  10. E. A. Golenev, A. V. Gurskaya, M. V. Dolgopolov, and E. N. Rykova, “Higgs potential in nonminimal supersymmetric model at the temperature of the phase change”, In: Contemporary Problems in Mathematics and Physics: Abstracts of the Uzbek-Israel International Conference, Uzbekistan Nat. Univ., Tashkent, pp. 152–155 (2017).

  11. A. V. Gurskaya, M. V. Dolgopolov, and E. N. Rykova, “Higgs bosons in Standard Model extensions,” Phys. Part. Nucl., 48, No. 5, 822–826 (2017).

    Article  Google Scholar 

  12. L. Hall, J. Lykken, and S. Weinberg, “Supergravity as the messenger of supersymmetry breaking,” Phys. Rev. D, 27, No. 10, 2359–2378(1983).

    Article  Google Scholar 

  13. D. I. Kazakov, “Higgs boson has been discovered. What next?”, Usp. Fiz. Nauk, 184, No. 9, 1004–1016 (2014).

    Article  Google Scholar 

  14. E. Komatsu et al., “Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation,” Astrophys. J. Suppl. Ser., 192, No. 2, https://doi.org/10.1088/0067-0049/192/2/18 (2011).

  15. J. Lesgourgues and S. Pastor, “Massive neutrinos and cosmology,” Phys. Rep., 429, No. 6, 307–379 (2006).

    Article  Google Scholar 

  16. V. Sahni and A. A. Starobinsky, “The case for a positive cosmological Λ-term,” Int. J. Mod. Phys. D, 9, No. 4, 373–444 (2000).

    Article  Google Scholar 

  17. D. N. Spergel et al., “First year Wilkinson microwave anisotropy probe (WMAP) observations: determination of cosmological parameters,” Astrophys. J. Suppl. Ser., 148, No. 1, 175–194 (2003).

    Article  Google Scholar 

  18. M. Tegmark et al., “Cosmological parameters from SDSS and WMAP,” Phys. Rev. D, 69, No. 10, 103501 (2004).

  19. S. Weinberg, “The cosmological constant problem,” Rev. Mod. Phys., 61, No. 1, 1–23 (1989).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Allakhverdieva.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 64, No. 4, Contemporary Problems of Mathematics and Physics, 2018.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allakhverdieva, A.E., Dolgopolov, M.V. & Rykova, E.N. Restrictions on Parameters of Minimal Supersymmetric Standard Model. J Math Sci 264, 672–683 (2022). https://doi.org/10.1007/s10958-022-06029-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-022-06029-x

Navigation