Skip to main content
Log in

The inverse Poletsky inequality in one class of mappings

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Almost everywhere differentiable mappings possessing the Luzin N-property, the N–1-property on spheres with respect to the (n–1)-dimensional Hausdorff measure, and the zero Lebesgue measure of the image of points where their Jacobian vanishes, have been studied. It has been proved that such mappings satisfy the lower estimate of the Poletsky-type distortion in their domain. In particular, if homeomorphism has an inverse from the Orlicz–Sobolev class, then, provided the Calderón condition for the determining function holds, it satisfies the inverse Poletsky inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Cristea, “On the lightness of the mappings satisfying generalized inverse modular inequalities,” Israel J. Math., 227, 545–562 (2018).

    Article  MathSciNet  Google Scholar 

  2. H. Federer, Geometric Measure Theory. Springer, Berlin etc. (1969).

    MATH  Google Scholar 

  3. A. Golberg, R. Salimov, and E. Sevost’yanov, “Poletskii Type Inequality for Mappings from the Orlicz-Sobolev Classes,” Complex Analysis and Operator Theory, 10(5), 881–901 (2016).

    Article  MathSciNet  Google Scholar 

  4. J. Hesse, “A p−extremal length and p-capacity equality,” Ark. Mat., 13, 131–144 (1975).

    Article  MathSciNet  Google Scholar 

  5. D. P. Ilyutko and E. A. Sevost’yanov, “Boundary behaviour of open discrete mappings on Riemannian manifolds,” Sb. Math., 209(5), 605–651 (2018).

    Article  MathSciNet  Google Scholar 

  6. B. A. Klishchuk and R. R. Salimov, “Lower bounds for the volume of the image of a ball,” Ukrainian Mathematical Journal, 71(5), 883–895 (2019).

    Article  MathSciNet  Google Scholar 

  7. D. Kovtonyuk and V. Ryazanov, “On the theory of mappings with finite area distortion,” J. Anal. Math., 104, 291–306 (2008).

    Article  MathSciNet  Google Scholar 

  8. D. Kovtonyuk, V. Ryazanov, R. Salimov, and E. Sevost’yanov, “Toward the theory of Orlicz-Sobolev classes,” St. Petersburg Math. J., 25(6), 929–963 (2014).

    Article  MathSciNet  Google Scholar 

  9. K. Kuratowsky, Topology: Volume I. Academic Press, New York (2014).

  10. K. Kuratowsky, Topology: Volume II. Academic Press, New York (2014).

  11. O. Martio, S. Rickman, and J. Väisälä, “Topological and metric properties of quasiregular mappings,” Ann. Acad. Sci. Fenn. Ser. A1, 488, 1–31 (1971).

    MATH  Google Scholar 

  12. O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, Moduli in Modern Mapping Theory. Springer Science + Business Media, LLC, New York (2009).

    MATH  Google Scholar 

  13. O. Martio and U. Srebro, “Automorphic quasimeromorphic mappings in ℝn,” Acta Math., 135, 221–247 (1975).

    Article  MathSciNet  Google Scholar 

  14. S. P. Ponomarev, “The N−1-property of mappings, and Lusin’s (N) condition,” Math. Notes., 58(3), 960–965 (1995).

    Article  MathSciNet  Google Scholar 

  15. Yu. G. Reshetnyak, Space mappings with bounded distortion. Transl. Math. Monogr., vol. 73, Amer. Math. Soc., Providence, R.I (1989).

  16. V. I. Ryazanov and E. A. Sevost’yanov, “Equicontinuous classes of ring Q-homeomorphisms,” Siberian Math. J., 48(6), 1093–1105 (2007).

    Article  MathSciNet  Google Scholar 

  17. S. Saks, Theory of the Integral. Dover Publ. Inc., New York (1964).

    MATH  Google Scholar 

  18. R. R. Salimov, “Logarithmic Asymptotics of a Class of Mappings,” Ukr. Math. Bull., 15(1), 65–79 (2018); transl. in. Journal of Mathematical Sciences, 235(1), 52–62 (2018).

  19. R. R. Salimov and B. A. Klishchuk, “An extremal problem for volume functionals,” Mat. Stud., 50, 36–43 (2018).

    Article  MathSciNet  Google Scholar 

  20. R. R. Salimov and E. A. Sevost’yanov, “Analogs of the Ikoma-Schwartz lemma and Liouville theorem for mappings with unbounded characteristic,” Ukrainian Math. J., 63(10), 1551–1565 (2012).

    Article  MathSciNet  Google Scholar 

  21. R. R. Salimov and E. A. Sevost’yanov, “The Poletskii and Väisälä inequalities for the mappings with (p, q)-distortion,” Complex Variables and Elliptic Equations, 59(2), 217–231 (2014).

    Article  MathSciNet  Google Scholar 

  22. E. A. Sevost’yanov, “On the local behavior of Open Discrete Mappings from the Orlicz–Sobolev Classes,” Ukr. Math. J., 68(9), 1447–1465 (2017).

    Article  Google Scholar 

  23. E. A. Sevost’yanov, “An analog of the Väisälä inequality for surfaces,” Complex Analysis and Operator Theory, 13(6), 2939–2948 (2019).

    Article  MathSciNet  Google Scholar 

  24. E. A. Sevost’yanov and S. O. Skvortsov, “Logarithmic Hölder continuous mappings and Beltrami equation,” Analysis and Mathematical Physics, 11(3), article number 138 (2021).

  25. E. A. Sevost’yanov, S. Skvortsov, and O. P. Dovhopiatyi, “On nonhomeomorphic mappings with the inverse Poletsky inequality,” Ukr. Math. Bull., 17(3), 414–436 (2020); transl. in Journal of Mathematical Sciences, 252(4), 541–557 (2021).

  26. R. R. Salimov, E. A. Sevost’yanov, and A. A. Markysh, “On the Lower Estimate of the Distortion of Distance for One Class of Mappings,” Ukr. Math. J., 70(11), 1791–1802 (2019).

    Article  Google Scholar 

  27. V. A. Shlyk, “The equality between p-capacity and p-modulus,” Siberian Mathematical Journal, 34(6), 1196–1200 (1993).

    Article  MathSciNet  Google Scholar 

  28. J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings. Lecture Notes in Math., 229. Springer–Verlag, Berlin etc. (1971).

  29. M. Vuorinen, “Exceptional sets and boundary behavior of quasiregular mappings in n-space,” Ann. Acad. Sci. Fenn. Ser. A 1. Math. Dissertationes, 11, 1–44 (1976).

  30. W. P. Ziemer, “Extremal length and conformal capacity,” Trans. Amer. Math. Soc., 126(3), 460–473 (1967).

    Article  MathSciNet  Google Scholar 

  31. W. P. Ziemer, “Extremal length and p-capacity,” Michigan Math. J., 16, 43–51 (1969).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny O. Sevost’yanov.

Additional information

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 19, No. 2, pp. 254–274, April–June, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevost’yanov, E.O. The inverse Poletsky inequality in one class of mappings. J Math Sci 264, 455–470 (2022). https://doi.org/10.1007/s10958-022-06011-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-022-06011-7

Keywords

Navigation