Skip to main content
Log in

Strengthened Belinskii theorem and its applications

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The remarkable theorem of P. Belinskii is a deep underlying result in the variational calculus for quasiconformal maps. It is valid only for maps with small sufficiently regular Beltrami coefficients. We provide a global version of this theorem connected with the classical results on quasiconformal extensions of conformal maps and its new applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abate and G. Patrizio, “Isometries of the Teichmüller metric,” Ann. Scuola Super. Pisa Cl. Sci., 26(4), 437–452 (1998).

    MATH  Google Scholar 

  2. L. Ahlfors, “An extension of Schwarz’s lemma,” Trans. Amer. Math. Soc., 43, 359–364 (1938).

    MathSciNet  MATH  Google Scholar 

  3. L. Ahlfors, “Finitely generated Kleinian groups,” Amer. J. Math., 86, 413–429 (1964).

    Article  MathSciNet  Google Scholar 

  4. L. Ahlfors, Lectures on Quasiconformal Mappings. Van Nostrand, Princeton (1966).

    MATH  Google Scholar 

  5. L. V. Ahlfors and G. Weill, “A uniqueness theorem for Beltrami equations,” Proc. Amer. Math. Soc., 13, 975–978 (1962).

    Article  MathSciNet  Google Scholar 

  6. J. Becker, “Löwnersche Differentialgleichung und Schlichtheitskriterien,” Math. Ann., 202, 321–335 (1973).

    Article  MathSciNet  Google Scholar 

  7. J. Becker, Conformal mappings with quasiconformal extensions. Aspects of Contemporary Complex Analysis, Proc. Confer. Durham 1979 (D.A. Brannan and J.G. Clunie, eds.). Academic Press, New York, pp. 37–77 (1980).

  8. P. P. Belinskii, General Properties of Quasiconformal Mappings [in Russian]. Novosibirsk, Nauka (1974).

  9. L. Bers, “A non-standard integral equation with applications to quasiconformal mappings,” Acta Math., 116, 113–134 (1966).

    Article  MathSciNet  Google Scholar 

  10. S. Dineen, The Schwarz Lemma. Clarendon Press, Oxford (1989).

    MATH  Google Scholar 

  11. C. J. Earle, On quasiconformal extensions of theBeurling-Ahlfors type. In: Contribution to Analysis, Academic Press, New York, 99–105 (1974).

    Chapter  Google Scholar 

  12. C. J. Earle and J. J. Eells, “On the differential geometry of Teichm¨uller spaces,” J. Analyse Math., 19, 35–52 (1967).

    Article  MathSciNet  Google Scholar 

  13. C. J. Earle, I. Kra, and S. L. Krushkal, “Holomorphic motions and Teichmüller spaces,” Trans. Amer. Math. Soc., 944, 927–948 (1994).

    MATH  Google Scholar 

  14. F. P. Gardiner, N. Lakic, Quasiconformal Teichmüller Theory. Amer. Math. Soc., Providence, RI (2000).

    MATH  Google Scholar 

  15. H. Grunsky, “Koeffizientenbedingungen für schlicht abbildende meromorphe Funktionen,” Math. Z., 45, 29–61 (1939).

    Article  MathSciNet  Google Scholar 

  16. S. Kobayayshi, Hyperbolic Complex Spaces. Springer, New York (1998).

    Book  Google Scholar 

  17. S. L. Krushkal, Quasiconformal Mappings and Riemann Surfaces. Wiley, New York (1979).

    MATH  Google Scholar 

  18. S. L. Krushkal, “Differential operators and univalent functions,” Complex Variables: Theory and Applications, 7, 107–127 (1986).

    MathSciNet  MATH  Google Scholar 

  19. S. L. Krushkal, “Grunsky coefficient inequalities, Carathéodory metric and extremal quasiconformal mappings,” Comment. Math. Helv., 64, 650–660 (1989).

    Article  MathSciNet  Google Scholar 

  20. S. L. Krushkal, “Plurisubharmonic features of the Teichmüller metric,” Publications de l’Institut Mathématique-Beograd, Nouvelle série, 75(89), 119–138 (2004).

    MATH  Google Scholar 

  21. S. L. Krushkal, “Quasireflections, Fredholm eigenvalues and Finsler metrics,” Doklady Mathematics, 69, 221–224 (2004).

    MATH  Google Scholar 

  22. S. L. Krushkal, Variational principles in the theory of quasiconformal maps, Ch. 2. In: Handbook of Complex Analysis: Geometric Function Theory, Vol. 2, Elsevier Science (R. K¨uhnau, ed.), Amsterdam, pp. 31–98 (2005).

  23. S. L. Krushkal, Quasiconformal extensions and reflections, Ch. 11. In: Handbook of Complex Analysis: Geometric Function Theory, Vol. II (R. Kühnau, ed.), Elsevier Science, Amsterdam, pp. 507–553 (2005).

  24. S. L. Krushkal, “On shape of Teichmüller spaces,” Journal of Analysis, 22, 69–76 (2014).

    MathSciNet  MATH  Google Scholar 

  25. S. L. Krushkal, “Strengthened Grunsky and Milin inequalities,” Contemp. Mathematics, 667, 159–179 (2016).

    Article  MathSciNet  Google Scholar 

  26. S. L. Krushkal, Curvelinear functionals of tangent abelian disks in universal Teichmüller space, submitted.

  27. S. L. Krushkal and R. Kühnau, “Grunsky inequalities and quasiconformal extension,” Israel J. Math., 152, 49–59 (2006).

    Article  MathSciNet  Google Scholar 

  28. R. Kühnau, “Verzerrungssätze und Koeffizientenbedingungen vom Grunskyschen Typ für quasikonforme Abbildungen,” Math. Nachr., 48, 77–105 (1971).

    Article  MathSciNet  Google Scholar 

  29. R. Kühnau, “Quasikonforme Fortsetzbarkeit, Fredholmsche Eigenwerte und Grunskysche Koeffizientenbedingungen,” Ann. Acad. Sci. Fenn. Ser. AI. Math., 7, 383–391 (1982).

    Article  MathSciNet  Google Scholar 

  30. R. Kühnau, “Möglichst konforme Spiegelung an einer Jordankurve,” Jber. Deutsch. Math. Verein., 90, 90–109 (1988).

    MATH  Google Scholar 

  31. I. M. Milin, Univalent Functions and Orthonormal Systems. Transl. of Mathematical Monographs, vol. 49. Transl. of Odnolistnye funktcii i normirovannie systemy, Amer. Math. Soc., Providence, R.I. (1977).

  32. D. Minda, “The strong form of Ahlfors’ lemma,” Rocky Mountain J. Math., 17, 457–461 (1987).

    Article  MathSciNet  Google Scholar 

  33. Chr. Pommerenke, Univalent Functions. Vandenhoeck & Ruprecht, Göttingen (1975).

  34. Chr. Pommerenke, Boundary Behaviour of Conformal Maps. Springer-Verlag, Berlin (1992).

  35. H. L. Royden, “The Ahlfors-Schwarz lemma: the case of equality,” J. Analyse Math., 46, 261–270 (1986).

    Article  MathSciNet  Google Scholar 

  36. M. Schiffer, “Fredholm eigenvalues and Grunsky matrices,” Ann. Polon. Math., 39, 149–164 (1981).

    Article  MathSciNet  Google Scholar 

  37. K. Strebel, “On the existence of extremal Teichmueller mappings,” J. Analyse Math., 30, 464–480 (1976).

    Article  MathSciNet  Google Scholar 

  38. I. N. Vekua, Generalized Analytic Functions [in Russian]. Fizmatgiz, Moscow (1959).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel L. Krushkal.

Additional information

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 19, No. 2, pp. 176–201, April–June, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krushkal, S.L. Strengthened Belinskii theorem and its applications. J Math Sci 264, 396–414 (2022). https://doi.org/10.1007/s10958-022-06007-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-022-06007-3

Keywords

Navigation