Skip to main content
Log in

Relative Centralizers of Relative Subgroups

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Let R be an associative ring with 1 and G = GL(n, R) the general linear group of degree n ≥ 3 over R. A goal of the paper is to calculate the relative centralizers of the relative elementary subgroups or the principal congruence subgroups, corresponding to an ideal AR modulo the relative elementary subgroups or the principal congruence subgroups, corresponding to another ideal BR. Modulo congruence subgroups, the results are essentially easy exercises in linear algebra. But modulo the elementary subgroups, they turned out to be quite tricky, and definitive answers are obtained only over commutative rings or, in some cases, only over Dedekind rings/Dedekind rings of arithmetic type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Ananyevskiy, N. A. Vavilov, and S. S. Sinchuk, “Overgroups of E(m,R) ⊗ E(n,R). I. Levels and normalizers,” St. Petersburg Math. J., 23, No. 5, 819–849 (2015).

    Article  MathSciNet  Google Scholar 

  2. A. Bak, “Non-Abelian K-theory: The nilpotent class of K1 and general stability,” KTheory, 4, 363–397 (1991).

    MATH  Google Scholar 

  3. A. Bak, R. Hazrat, and N. A. Vavilov, “Localization-completion strikes again: relative K1 is nilpotent by Abelian,” J. Pure Appl. Algebra, 213, 1075–1085 (2009).

    Article  MathSciNet  Google Scholar 

  4. A. Bak and N. Vavilov, “Structure of hyperbolic unitary groups. I. Elementary subgroups,” Algebra Colloq., 7, No. 2, 159–196 (2000).

    Article  MathSciNet  Google Scholar 

  5. H. Bass, “K-theory and stable algebra,” Inst. Hautes Études Sci. Publ. Math., No. 22, 5–60 (2002).

  6. H. Bass, J. Milnor, and J.-P. Serre, “Solution of the congruence subgroup problem for SLn (n ≥ 3) and Sp2n (n ≥ 2),” Publ. Math. Inst. Hautes Etudes Sci., 33, 59–137 (1967).

    Article  Google Scholar 

  7. Z. I. Borewicz and N. A. Vavilov, “Subgroups of the general linear group over a semilocal ring, containing the group of diagonal matrices,” Proc. Steklov. Inst. Math., 148, 41–54 (1980).

    MATH  Google Scholar 

  8. Z. I. Borewicz and N. A. Vavilov, “The distribution of subgroups in the full linear group over a commutative ring,” Proc. Steklov Inst. Math., 165, 27–46 (1985).

    Google Scholar 

  9. J. L. Bueso, J. Gómez-Torrencillas, and A. Verschoren, Algorithmic methods in noncommutative algebra: applications to finite groups, Springer Verlag, Berlin et al. (2013).

  10. A. J. Hahn and O. T. O’Meara, The classical groups and K-theory, Springer, Berlin et al. (1989).

    Book  Google Scholar 

  11. R. Hazrat, “Dimension theory and non-stable K1 of quadratic module,” K-Theory, 27, 293–327 (2002).

    Article  MathSciNet  Google Scholar 

  12. R. Hazrat, A. Stepanov, N. Vavilov, and Zuhong Zhang, “The yoga of commutators,” J. Math. Sci., 179, No. 6, 662–678 (2011).

    Article  MathSciNet  Google Scholar 

  13. R. Hazrat, A. Stepanov, N. Vavilov, and Zuhong Zhang, “Commutators width in Chevalley groups,” Note Matem., 33, No. 1, 139–170 (2013).

    MathSciNet  MATH  Google Scholar 

  14. R. Hazrat and N. Vavilov, “K1 of Chevalley groups are nilpotent,” J. Pure Appl. Algebra, 179, No. 1, 99–116 (2003).

    Article  MathSciNet  Google Scholar 

  15. R. Hazrat and N. Vavilov, “Bak’s work on the K-theory of rings,” J. K-Theory, 4, No. 1, 1–65 (2009).

    Article  MathSciNet  Google Scholar 

  16. R. Hazrat, N. Vavilov, and Zuhong Zhang, “The commutators of classical groups,” J. Math. Sci., 222, No. 4, 466–515 (2017).

    Article  MathSciNet  Google Scholar 

  17. R. Hazrat and Zuhong Zhang, “Generalized commutator formula,” Commun. Algebra, 39, No. 4, 1441–1454 (2011).

    Article  MathSciNet  Google Scholar 

  18. R. Hazrat and Zuhong Zhang, “Multiple commutator formula,” Israel J. Math., 195, 481–505 (2013).

    Article  MathSciNet  Google Scholar 

  19. W. van der Kallen, “A module structure on certain orbit sets of unimodular rows,” J. Pure Appl. Algebra, 57, No. 3, 281–316 (1989).

    Article  MathSciNet  Google Scholar 

  20. H. Marubayashi, “Primary ideal representations in non-commutative rings,” Math. J. Okayama Univ., 13, No. 1, 1–7 (1967).

    MathSciNet  MATH  Google Scholar 

  21. A. W. Mason, “On subgroups of GL(n,A) which are generated by commutators. II,” J. Reine Angew. Math., 322, 118–135 (1981).

    MathSciNet  MATH  Google Scholar 

  22. A. W. Mason, “On non-normal subgroups of GLn(A) which are normalized by elementary matrices,” Illinois J. Math., 28, No. 1, 125–138 (1984).

    Article  MathSciNet  Google Scholar 

  23. A. W. Mason and W. W. Stothers, “On subgroups of GL(n,A) which are generated by commutators,” Invent. Math., 23, 327–346 (1974).

    Article  MathSciNet  Google Scholar 

  24. D. C. Murdoch, “Contribution to non-commutative ideal theory,” Canad. J. Math., 4, No. 1, 43–57 (1952).

    Article  MathSciNet  Google Scholar 

  25. O. Steinfeld, “On ideal-quotients and prime ideals,” Acta Math. Acad. Sci. Hungar., 4, No. 3–4, 289–298 (1953).

    Article  MathSciNet  Google Scholar 

  26. L. N. Vaserstein, “On the normal subgroups of the GLn of a ring,” in: Algebraic KTheory, Evanston 1980, Lecture Notes in Math., vol. 854, Springer, Berlin et al. (1981), pp. 454–465.

  27. N. Vavilov, “Unrelativised standard commutator formula,” Zap. Nauchn. Semin. POMI, 470, 38–49 (2018).

    Google Scholar 

  28. N. Vavilov, “Commutators of congruence subgroups in the arithmetic case,” J. Math. Sci., 479, 5–22 (2019).

    MathSciNet  Google Scholar 

  29. N. Vavilov, “Towards the reverse decomposition of unipotents. II. The relative case,” J. Math. Sci., 484, 5–23 (2019).

    MathSciNet  Google Scholar 

  30. N. A. Vavilov and M. R. Gavrilovich, “A2-proof of structure theorems for Chevalley groups of types E6 and E7,” St. Petersburg Math. J., 16, No. 4, 649–672 (2005).

    Article  MathSciNet  Google Scholar 

  31. N. A. Vavilov and A. Yu. Luzgarev, “The normalizer of Chevalley groups of type E6,” St. Petersburg Math. J., 19, No. 5, 699–718 (2008).

    Article  MathSciNet  Google Scholar 

  32. N. A. Vavilov and A. Yu. Luzgarev, “The normalizer of Chevalley groups of type E7,” St. Petersburg Math. J., 27, No. 6, 899–921 (2016).

    Article  MathSciNet  Google Scholar 

  33. N. A. Vavilov and S. I. Nikolenko, “A2-proof of structure theorems for the Chevalley group of type F4,” St. Petersburg Math. J., 20, No. 4, 527–551 (2009).

    Article  MathSciNet  Google Scholar 

  34. N. A. Vavilov and V. A. Petrov, “Overgroups of elementary symplectic groups,” St. Petersburg Math. J., 15, No. 4, 515–543 (2004).

    Article  MathSciNet  Google Scholar 

  35. N. A. Vavilov and V. A. Petrov, “Overgroups of EO(n,R),” St. Petersburg Math. J., 19, No. 2, 167–195 (2008).

    Article  MathSciNet  Google Scholar 

  36. N. A. Vavilov, and A. V. Stepanov, “Standard commutator formula,” Vestn. St. Petersburg State Univ., ser. 1, 41, No. 1, 5–8 (2008).

    MathSciNet  MATH  Google Scholar 

  37. N. A. Vavilov, and A. V. Stepanov, “Standard commutator formula, revisited,” Vestn. St.Petersburg State Univ., ser. 1, 43, No. 1, 12–17 (2010).

    MathSciNet  MATH  Google Scholar 

  38. N. Vavilov and Z. Zhang, “Generation of relative commutator subgroups in Chevalley groups. II,” Proc. Edinburgh Math. Soc., 63, 497–511 (2020).

    Article  MathSciNet  Google Scholar 

  39. N. Vavilov and Z. Zhang, “Commutators of relative and unrelative elementary groups, revisited,” J. Math. Sci., 485, 58–71 (2019).

    MathSciNet  MATH  Google Scholar 

  40. N. Vavilov and Z. Zhang, “Multiple commutators of elementary subgroups: end of the line,” Linear Algebra Applic., 599, 1–17 (2020).

    Article  MathSciNet  Google Scholar 

  41. N. Vavilov and Z. Zhang, “Inclusions among commutators of elementary subgroups,” submitted to J. Algebra, 1–26 (2019).

  42. N. Vavilov and Z. Zhang, “Commutators of relative and unrelative elementary subgroups in Chevalley groups,” submitted to Edinburg Math. Soc., 1–18 (2020).

  43. N. Vavilov and Z. Zhang, “Commutators of relative and unrelative elementary unitary groups,” submitted to J. Algebra Number Theory, 1–40 (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Vavilov.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 492, 2020, pp. 10–24.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vavilov, N.A., Zhang, Z. Relative Centralizers of Relative Subgroups. J Math Sci 264, 4–14 (2022). https://doi.org/10.1007/s10958-022-05973-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-022-05973-y

Navigation