Skip to main content
Log in

Second-Kind Equilibrium States of the Kuramoto–Sivashinsky Equation with Homogeneous Neumann Boundary Conditions

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we consider the boundary-value problem for the Kuramoto–Sivashinsky equation with homogeneous Neumann conditions. The problem on the existence and stability of second-kind equilibrium states was studied in two ways: by the Galerkin method and by methods of the modern theory of infinite-dimensional dynamical systems. Some differences in results obtained are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Armbruster, J. Guckenheimer, and P. Holmes, “Kuramoto–Sivashinsky dynamics on the centerunstable manifold,” Siam J. Appl. Math., 3, No. 49, 676–691 (1989).

    Article  Google Scholar 

  2. B. Barker, M. A. Johnson, P. Noble, and K. Zumbrun, “Stability of periodic Kuramoto–Sivashinsky waves,” Appl. Math. Lett., 5, No. 25, 824–829 (2012).

    Article  MathSciNet  Google Scholar 

  3. B. Barker, M. A. Johnson, P. Noble, L. M. Rodrigues, and K. Zumbrun, “Nonlinear modulational stability of periodic traveling-wave solutions of the generalized Kuramoto–Sivashinsky equation,” Phys. D., 25, 11–46 (2013).

    Article  MathSciNet  Google Scholar 

  4. R. Bradley and J. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol., 4, No. 6, 2390–2395 (1988).

    Article  Google Scholar 

  5. B. I. Emelyanov, “The Kuramoto–Sivashinsky equation for the defect-deformation. Instability of a surface-stressed nanolayer,” Laser Phys., 3, No. 19, 538–543 (2009).

    Article  Google Scholar 

  6. V. M. Emelyanov, “Defect-deformational surface layer instability as a universal mechanism for forming lattices and nanodot ensembles under the effect of ion and laser beams on solid bodies,” Izv. Ross. Akad. Nauk. Ser. Fiz., 74, No. 2, 124–130 (2010).

    Google Scholar 

  7. M. P. Gelfand and R. M. Bradley, “One-dimensional conservative surface dynamics with broken parity: Arrested collapse versus coarsening,” Phys. Lett. A., 4, No. 1, 199–205 (2015).

    Article  MathSciNet  Google Scholar 

  8. N. A. Kudryashov, P. N. Ryabov, and T. E. Fedyanin, “On self-organization processes of nanostructures on semiconductor surface by ion bombardment,” Mat. Model., 24, No. 12, 23–28 (2012).

    MATH  Google Scholar 

  9. N. A. Kudryashov, P. N. Ryabov, and M. N. Strikhanov, “Numerical simulation of the formation of nanostructures on the surface of flat substrates under ion bombardment,” Yad. Fiz. Inzh., 2, No. 1, 151–158 (2010).

    Google Scholar 

  10. A. N. Kulikov and D. A. Kulikov, “Formation of wavy nanostructures on the surface of flat substrates by ion bombardment,” Zh. Vychisl. Mat. Mat. Fiz., 52, No. 5, 930–945 (2012).

    MathSciNet  MATH  Google Scholar 

  11. A. N. Kulikov and D. A. Kulikov, “Bifurcations of spatially inhomogeneous solutions in two boundary-value problems for the generalized Kuramoto–Sivashinsky equation,” Vestn. MIFI., 3, No. 4, 408–415 (2014).

    MathSciNet  Google Scholar 

  12. A. N. Kulikov and D. A. Kulikov, “Bifurcations in a boundary-value problem of nanoelectronics,” J. Math. Sci., 6, 211–221 (2015).

    Article  MathSciNet  Google Scholar 

  13. A. N. Kulikov and D. A. Kulikov, “Bifurcation in Kuramoto–Sivashinsky equation,” Pliska Stud. Math., 4, No. 3, 101–110 (2015).

    MathSciNet  MATH  Google Scholar 

  14. A. N. Kulikov and D. A. Kulikov, “Kuramoto–Sivashinsky equation. Local attractor filled in by unstable periodic solutions,” Model. Anal. Inform. Sist., 1, 92–101 (2018).

    Article  Google Scholar 

  15. A. N. Kulikov, D. A. Kulikov, and A. S. Rudyi, “Bifurcations of nanostructures under the influence of ion bombardment,” Vestn. Udmurt. Univ., 4, 86–99 (2011).

    MATH  Google Scholar 

  16. Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag, Berlin (1984).

  17. B. Nicolaenko, B. Scheurer, and R. Temam, “Some global dynamical properties of the Kuramoto–Sivashinsky equations: Nonlinear stability and attractors,” Phys. D., 12, No. 24, 155–183 (1985).

    Article  MathSciNet  Google Scholar 

  18. A. V. Sekatskaya, “Bifurcations of spatially inhomogeneous solutions in one boundary-value problem for the generalized Kuramoto–Sivashinsky equation,” Model. Anal. Inform. Sist., 5, No. 24, 615–628 (2017).

    Article  MathSciNet  Google Scholar 

  19. G. I. Sivashinsky, “Weak turbulence in periodic flow,” Phys. D., 2, No. 17, 243–255 (1985).

    Article  MathSciNet  Google Scholar 

  20. P. E. Sobolevsky, “On parabolic equations in Banach spaces,” Tr. Mosk. Mat. Obshch., No. 10, 297–350 (1961).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Sekatskaya.

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 168, Proceedings of the International Conference “Geometric Methods in the Control Theory and Mathematical Physics” Dedicated to the 70th Anniversary of Prof. S. L. Atanasyan, 70th Anniversary of Prof. I. S. Krasil’shchik, 70th Anniversary of Prof. A. V. Samokhin, and 80th Anniversary of Prof. V. T. Fomenko. Ryazan State University named for S. Yesenin, Ryazan, September 25–28, 2018. Part I, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekatskaya, A.V. Second-Kind Equilibrium States of the Kuramoto–Sivashinsky Equation with Homogeneous Neumann Boundary Conditions. J Math Sci 262, 844–854 (2022). https://doi.org/10.1007/s10958-022-05863-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-022-05863-3

Keywords and phrases

AMS Subject Classification

Navigation