Several mean value identities for harmonic and panharmonic functions are reviewed along with the corresponding inverse properties. The latter characterize balls, annuli, and strips analytically via these functions.
Similar content being viewed by others
References
S. Axler, P. Bourdon, and W. Ramey, Harmonic Function Theory, Springer, New York (2001).
I. Netuka and J. Veselý, “Mean value property and harmonic functions,” In: Classical and Modern Potential Theory and Applications, pp. 359–398, Kluwer, Dordrecht (1994).
Ü, Kuran, “On the mean value property of harmonic functions,” Bull. Lond. Math. Soc. 4, 311–312 (1972).
N. Kuznetsov, “Characterization of balls via solutions of the modified Helmholtz equation,” C. R., Math., Acad. Sci. Paris 359, No. 8, 945–948 (2021).
N. Kuznetsov, “Inverse mean value property of solutions to the modified Helmholtz equation,” Algebra Anal. 33, No. 6,71–77 (2021).
W. Fulks, “A mean value theorem for the heat equation,” Proc. Am. Math. Soc. 17, 6–11 (1966).
N. A. Watson, “Characterizations of open strips by temperatures and harmonic functions,” N. Z. J. Math. 25, No. 2, 243–248 (1996).
R. J. Duffin, “Yukawan potential theory,” J. Math. Anal. Appl. 35, 105–130 (1971).
C. F. Gauss, Allgemeine Lehrs¨atze in Beziehung auf die im verkehrten Verhältnisse des Quadrats der Entfernung wirkenden Anziehungs- und Abstoungskräfte, Leipzig (1840).
P. Koebe, “Herleitung der partiellen Differentialgleichungen der Potentialfunktion aus deren Integraleigenschaft” [in German], Sitzungsber. Berl. Math. Ges. 5, 39–42 (1906).
C. Neumann, Allgemeine Untersuchungen über das Newtonsche Prinzip der Fernwirkungen, Teubner, Leipzig (1896).
N. Kuznetsov, “Mean value properties of solutions to the Helmholtz and modified Helmholtz equations,” J. Math. Sci. 257, No. 5, 673–683 (2021).
N. Kuznetsov, “Metaharmonic functions: mean flux theorem, its converse and related properties” [in Russian], Algebra Anal. 33, No. 2, 82–97 (2021).
F. John, Plane Waves and Spherical Means Applied to Partial Differential Equations, Interscience, New York (1955).
G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge (1944).
A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics. A Unified Introduction with Applications, Birkhäuser, Basel (1988).
A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series. Vol. 2: Special Functions, Gordon and Breach, New York etc. (1986).
D. H. Armitage and M. Goldstein, “Quadrature and harmonic L1-approximation in annuli,” Trans. Am. Math. Soc. 312, No. 1, 141–154 (1989).
S. J. Gardiner and T. Sjödin, “A characterization of annular domains by quadrature identities,” Bull. Lond. Math. Soc. 51, No. 3, 436–442 (2019).
D. H. Armitage and M. Goldstein, “Quadrature and harmonic approximation of subharmonic functions in strips,” J. Lond. Math. Soc., II 46, 171–179 (1992).
D. H. Armitage and M. Goldstein, “Characterizations of balls and strips via harmonic quadrature,” In: Approximation by Solutions of Partial Differential Equations, pp. 1–9, Kluwer, London etc. (1992).
D. H. Armitage and S. J. Gardiner, “On the growth of the hyperplane mean of a subharmonic function,” J. Lond. Math. Soc., II 36, No. 3, 501–512 (1987).
M. Goldstein, W. Haussmann, and L. Rogge, “A harmonic quadrature formula characterizing bi-infinite cylinders,” Mich. Math. J. 42, No. 1, 175–191 (1995).
D. Aharonov, M. M. Schiffer, and L. Zalcman, “Potato Kugel,” Isr. J. Math. 40, 331–339 (1981).
G. Cupini and E. Lanconelli, “On the harmonic characterization of domains via mean value formulas,” Matematiche 75, No. 1, 331–352 (2020).
A. A. Kosmodem’yanskii (Jr.), “A converse of the mean value theorem for harmonic functions,” Russ. Math. Surv. 36, No. 5, 159–160 (1981).
A. Bennett, “Symmetry in an overdetermined fourth order elliptic boundary value problem,” SIAM J. Math. Anal. 17, 1354–1358 (1986).
J. Serrin, “A symmetry problem in potential theory,” Arch. Ration. Mech. Anal. 43, 304–318 (1971).
H. F. Weinberger, “Remark on the preceding paper of Serrin,” Arch. Ration. Mech. Anal. 43, 319–320 (1971).
L. E. Payne and P. W. Schaefer, “Duality theorems in some overdetermined boundary value problems,” Math. Methods Appl. Sci. 11, No. 6, 805–819 (1989).
A. Didenko and B. Emamizadeh, “A characterization of balls using the domain derivative.” Electron. J. Differ. Equ. 2006 Paper No. 154 (2006).
J. Simon, “Differentiation with respect to the domain in boundary value problems,” Numer. Func. Anal. Optim. 2. 649–687 (1981).
Y. Avci, “Characterization of shell domains by quadrature identities,” J. Lond. Math. Soc., II 23, 123–128 (1981).
W. K. Hayman and E. F. Lingham, Research Problems in Function Theory, Springer, Cham (2019).
W. Hansen and I. Netuka, “Inverse mean value property of harmonic functions,” Math. Ann. 297, No. 1, 147–156 (1993); Corrigendum: Math. Ann. 303, No. 2, 373–375 (1995).
I. Marrero Rodríguez, “Analytic characterizations of annuli,” Rev. Acad. Canar. Cienc. 1, 147–153 (1990).
M. Goldstein, W. Haussmann, and L. Rogge, “Characterization of open strips by harmonic quadrature,” In: Approximation by Solutions of Partial Differential Equations, pp. 87–92 (1992).
D. H. Armitage and C. S. Nelson, “A harmonic quadrature formula characterizing open strips,” Math. Proc. Camb. Philos. Soc. 113, No. 1, 147–151 (1993).
M. Goldstein, W. Haussmann, and L. Rogge, “On the inverse mean value property of harmonic functions on strips,” Bull. Lond. Math. Soc. 24, No. 6, 559–564 (1992).
D. H. Armitage and M. Goldstein, “The volume mean-value property of harmonic functions,” Complex Variables, Theory Appl. 13, No. 3-4, 185–193 (1990).
J. L. Doob, Classical Potential Theory and Its Probabilistic Counterpart, Springer, Berlin etc. (1984).
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated from Problemy Matematicheskogo Analiza 115, 2022, pp. 41-53.
Rights and permissions
About this article
Cite this article
Kuznetsov, N. Inverse Mean Value Properties (A Survey). J Math Sci 262, 275–290 (2022). https://doi.org/10.1007/s10958-022-05816-w
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10958-022-05816-w