Skip to main content
Log in

On Periodic Approximate Solutions of Dynamical Systems with Quadratic Right-Hand Side

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We consider difference schemes for dynamical systems \( \dot{x}=f(x) \) with quadratic right-hand side that have t-symmetry and are reversible. Reversibility is interpreted in the sense that a Cremona transformation is performed at each step of the computations using the difference scheme. The inheritance of periodicity and the Painlevé property by the approximate solution is investigated. In the computer algebra system Sage, values are found for the step Δt for which the approximate solution is a sequence of points with period n ∈ ℕ. Examples are given, and conjectures about the structure of the sets of initial data generating sequences with period n are formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. J. Cooper, “Stability of Runge–Kutta methods for trajectory problems,” IMA J. Numer. Anal., 7, 1–13 (1987).

  2. Y. B. Suris, “Preservation of symplectic structure in the numerical solution of Hamiltonian systems,” in: S. S. Filippov (ed.), Numerical Solution of Differential Equations [in Russian], Akad. Nauk. SSSR, Inst. Prikl. Mat., Moscow (1988), pp. 138–144.

    Google Scholar 

  3. Yu. B. Suris, “Hamiltonian methods of Runge–Kutta type and their variational interpretation,” Math. Model., 2, 78–87 (1990).

  4. E. Hairer, G. Wanner, and Ch. Lubich, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer, Berlin–Heidelberg–New York (2000).

    MATH  Google Scholar 

  5. D. Greenspan, “Completely conservative and covariant numerical methodology for N-body problems with distance-dependent potentials,” technical report No. 285 at http://hdl.handle.net/10106/2267 (1992).

  6. D. Greenspan, “Completely conservative, covariant numerical methodology,” Comp. Math. Appl., 29, No. 4, 37–43 (1995).

    Article  MathSciNet  Google Scholar 

  7. D. Greenspan, “Completely conservative, covariant numerical solution of systems of ordinary differential equations with applications,” Rend. Sem. Mat. Fis. Milano, 65, 63–87 (1995).

    Article  MathSciNet  Google Scholar 

  8. D. Greenspan, N-Body Problems and Models, World Scientific (2004).

    Book  Google Scholar 

  9. J. C. Simo and O. González, “Assessment of energy-momentum and symplectic schemes for stiff dynamical systems,” presented at the ASME Annual Meeting (1993).

  10. E. Graham, G. Jeleni, and M. A. Crisfield, “A note on the equivalence of two recent time-integration schemes for N-body problems,” Comm. Numer. Methods Engrg., 18, 615–620 (2002).

    Article  MathSciNet  Google Scholar 

  11. E. A. Ayryan, M. D. Malykh, L. A. Sevastianov, and Yu Ying, “On periodic approximate solutions of the three-body problem found by conservative difference schemes,” Lect. Notes Comput. Sci., 12291, 77–90 (2020).

    Article  MathSciNet  Google Scholar 

  12. X. Yang and L. Ju, “Efficient linear schemes with unconditional energy stability for the phase field elastic bending energy model,” Comput. Methods Appl. Mech. Engrg., 315, 691–711 (2016).

    Article  MathSciNet  Google Scholar 

  13. X. Yang and L. Ju, “Linear and unconditionally energy stable schemes for the binary fluid-surfactant phase field model,” Comput. Methods Appl. Mech. Engrg., 318, 1005–1029 (2017).

    Article  MathSciNet  Google Scholar 

  14. H. Zhang, X. Qian, and S. Song, “Novel high-order energy-preserving diagonally implicit Runge–Kutta schemes for nonlinear Hamiltonian ODEs,” Appl. Math. Lett., 102, 106091 (2020).

  15. J. Shen, J. Xu, and J. Yang, “The scalar auxiliary variable (SAV) approach for gradient flows,” J. Comput. Phys., 353, 407–416 (2018).

    Article  MathSciNet  Google Scholar 

  16. P. Painlevé, “Le, cons sur la theorie analytique des equations differentielles,” in: OEuvres de Paul Painlevé, Vol. 1 (1971).

  17. H. Umemura, “Birational automorphism groups and differential equations,” Nagoya Math. J., 119, 1–80 (1990).

    Article  MathSciNet  Google Scholar 

  18. M. D. Malykh, “On transcendental functions arising from integrating differential equations in finite terms,” J. Math. Sci., 209, 935–952 (2015).

    Article  MathSciNet  Google Scholar 

  19. L. Cremona, “Sulle trasformazioni geometriche delle figure piane,” in: Opere matematiche di Luigi Cremona, Vol. 2, U. Hoepli, Milano (1915), pp. 54–61, 193–218.

  20. M. Hénon, “A two-dimensional mapping with a strange attractor,” Comm. Math. Phys., 50, 69–77 (1976).

    Article  MathSciNet  Google Scholar 

  21. M. Tabor, Chaos and Integrability in Nonlinear Dynamics: An Introduction, Wiley (1989).

    MATH  Google Scholar 

  22. E. A. Ayryan, M. D. Malykh, L. A. Sevastianov, and Yu Ying, “On explicit difference schemes for autonomous systems of differential equations on manifolds,” Lect. Notes Comput. Sci., 11661, 343–361 (2019).

    Article  MathSciNet  Google Scholar 

  23. A. Goriely, Integrability and Nonintegrability of Dynamical Systems, World Scientific (2001).

    Book  Google Scholar 

  24. W. W. Golubev, Lectures on Integration of the Equations of Motion of a Rigid Body About a Fixed Point, Jerusalem (1960).

  25. F. Klein, Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert, Vol. 1, Springer, Berlin–Heidelberg (1979).

  26. E. A. Ayryan, M. D. Malykh, and L. A. Sevastianov, “On difference schemes approximating first-order differential equations and defining a projective correspondence between layers,” J. Math. Sci., 240, 634–645 (2019).

    Article  MathSciNet  Google Scholar 

  27. M. N. Lagutinski, “Sur la forme la plus simple du système d’equations différentielles ordinaires,” Mat. Sb., 27, No. 4, 420–423 (1911).

    Google Scholar 

  28. A. Bychkov and G. Pogudin, “Optimal monomial quadratization for ODE systems,” arXiv:2103.08013 (2021).

  29. B. Grammaticos, F. W. Nijhoff, and A. Ramani, “Discrete Painlevé equations,” in: The Painlevé Property, One Century Later, Springer, Berlin–Heidelberg (1999), pp. 413–516.

  30. P. A. Clarkson, E. L. Mansfield, and H. N. Webster, “On the relation between the continuous and discrete Painlevé equations,” Theor. Math. Phys., 122, 1–16 (2000).

    Article  Google Scholar 

  31. K. Ishizaki and R. Korhonen, “Meromorphic solutions of algebraic difference equations,” Constr. Approx., 48, 371–384 (2018).

    Article  MathSciNet  Google Scholar 

  32. V. P. Gerdt, M. D. Malykh, L. A. Sevastianov, and Yu Ying, “On the properties of numerical solutions of dynamical systems obtained using the midpoint method,” Discrete Contin. Models Appl. Comput. Sci., 27, No. 3, 242–262 (2019).

    Article  Google Scholar 

  33. SageMath, the Sage Mathematics Software System, Version 7.4 (2016); https://www.sagemath.org.

  34. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, Dover, Mineola (2010).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Malykh.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 507, 2021, pp. 157–172.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baddour, A., Malykh, M. & Sevastianov, L. On Periodic Approximate Solutions of Dynamical Systems with Quadratic Right-Hand Side. J Math Sci 261, 698–708 (2022). https://doi.org/10.1007/s10958-022-05781-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-022-05781-4

Navigation