We present a new family of hook-length formulas for the number of standard increasing tableaux which arise in the study of factorial Grothendieck polynomials. In the case of straight shapes, our formulas generalize the classical hook-length formula and the Littlewood formula. For skew shapes, our formulas generalize the Naruse hook-length formula and its q-analogs, which were studied in previous papers of the series.
Similar content being viewed by others
References
H. H. Andersen, J. C. Jantzen, and W. Soergel, Representations of Quantum Groups at pth Root of Unity and of Semisimple Groups in Characteristic p: Independence of p,” Astérisque, 220 (1994).
S. Billey, “Kostant polynomials and the cohomology ring for G/B,” Duke Math. J., 96, 205–224 (1999).
M. Brion, “Lectures on the geometry of flag varieties,” in: Topics in Cohomological Studies of Algebraic Varieties, Birkh¨auser, Basel (2005), pp. 33–85.
A. Buch, “A Littlewood–Richardson rule for the K-theory of Grassmannians,” Acta Math., 189, 37–78 (2002).
A. Buch, “Combinatorial K-theory,” in: Topics in Cohomological Studies of Algebraic Varieties, Birkhäuser, Basel (2005), pp. 87–103.
A. Buch, A. Kresch, M. Shimozono, H. Tamvakis, and A. Yong, “Stable Grothendieck polynomials and K-theoretic factor sequences,” Math. Ann., 340, 359–382 (2008).
D. Bump, P. J. McNamara, and M. Nakasuji, “Factorial Schur functions and the Yang–Baxter equation,” Comment. Math. Univ. St. Pauli, 63, 23–45 (2014).
X. Chen and R. P. Stanley, “A formula for the specialization of skew Schur functions,” Ann. Comb., 20, 539–548 (2016).
I. Ciocan-Fontanine, M. Konvalinka, and I. Pak, “The weighted hook length formula,” J. Combin. Theory, Ser. A, 118, 1703–1717 (2011).
K. Dilks, O. Pechenik, and J. Striker, “Resonance in orbits of plane partitions and increasing tableaux,” J. Combin. Theory, Ser. A, 148, 244–274 (2017).
P. Edelman and C. Greene, “Balanced tableaux,” Adv. Math., 63, 42–99 (1987).
N. J. Y. Fan, P. L. Guo, and S. C. C. Sun, “Proof of a conjecture of Reiner–Tenner–Yong on barely set-valued tableaux,” SIAM J. Discrete Math., 33, 189–196 (2019).
S. Fomin and A. N. Kirillov, “Yang–Baxter equation, symmetric functions and Grothendieck polynomials,” preprint (1993); arXiv:hep-th/9306005.
S. Fomin and A. N. Kirillov, “Grothendieck polynomials and the Yang–Baxter equation,” in: Proc. 6th FPSAC, DIMACS, Piscataway, New Jersey (1994), pp. 183–190.
S. Fomin and A. N. Kirillov, “Reduced words and plane partitions,” J. Algebraic Combin., 6, 311–319 (1997).
J. S. Frame, G. de B. Robinson, and R. M. Thrall, “The hook graphs of the symmetric group,” Canad. J. Math., 6, 316–324 (1954).
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, New York (1983).
W. Graham and V. Kreiman, “Excited Young diagrams and equivariant K-theory, and Schubert varieties,” Trans. Amer. Math. Soc., 367, 6597–6645 (2015).
C. Greene, A. Nijenhuis, and H. S. Wilf, “A probabilistic proof of a formula for the number of Young tableaux of a given shape,” Adv. Math., 31, 104–109 (1979).
Z. Hamaker, R. Patrias, O. Pechenik, and N. Williams, “Doppelg¨angers: bijections of plane partitions,” Int. Math. Res. Not., 2020, No. 2, 487–540 (2020).
Z. Hamaker, A. H. Morales, I. Pak, L. Serrano, and N. Williams, “Bijecting hidden symmetries for skew staircase shapes,” preprint (2021); arXiv:2103.09551.
Z. Hamaker and B. Young, “Relating Edelman–Greene insertion to the Little map,” J. Algebraic Combin., 40, 693–710 (2014).
B. H. Hwang, J. S. Kim, M. Yoo, and S. M. Yun, “Reverse plane partitions of skew staircase shapes and q-Euler numbers,” J. Combin. Theory, Ser. A, 168, 120–163 (2019).
T. Ikeda and H. Naruse, “Excited Young diagrams and equivariant Schubert calculus,” Trans. Amer. Math. Soc., 361, 5193–5221 (2009).
T. Ikeda and H. Naruse, “K-theoretic analogues of factorial Schur P- and Q-functions,” Adv. Math., 243, 22–66 (2013).
V. Kreiman, “Schubert classes in the equivariant K-theory and equivariant cohomology of the Grassmannian,” preprint (2005); arXiv:math.AG/0512204.
A. Knutson and E. Miller, “Gröbner geometry of Schubert polynomials,” Ann. Math., 161, 1245–1318 (2005).
A. Knutson, E. Miller, and A. Yong, “Gr¨obner geometry of vertex decompositions and of flagged tableaux,” J. Reine Angew. Math., 630, 1–31 (2009).
M. Konvalinka, “A bijective proof of the hook-length formula for skew shapes,” European J. Combin., 88, 103104 (2020).
T. Lam, S. J. Lee, and M. Shimozono, “Back stable Schubert calculus,” Compos. Math., 157, 883–962 (2021).
A. Lascoux and M.-P. Schützenberger, “Polynômes de Schubert,” C. R. Acad. Sci. Paris, 294, No. 13, 447–450 (1982).
A. Lascoux and M.-P. Schützenberger, “Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une vari´et´e de drapeaux,” C. R. Acad. Sci. Paris, 295, No. 11, 629–633 (1982).
C. Lenart and A. Postnikov, “Affine Weyl groups in K-theory and representation theory,” Int. Math. Res. Not., 2007, No. 12, Art. ID rnm038 (2007).
D. E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups, 2nd edition, Oxford Univ. Press, New York (1950).
I. G. Macdonald, “Schur functions: theme and variations,” in: Publ. Inst. Rech. Math. Av., 498, Univ. Louis Pasteur, Strasbourg (1992), pp. 5–39.
L. Manivel, Symmetric Functions, Schubert Polynomials and Degeneracy Loci, Amer. Math. Soc., Providence, Rhode Island (2001).
P. J. McNamara, “Factorial Grothendieck polynomials,” Electron. J. Combin., 13, No. 1, RP 71 (2006).
P. J. McNamara, “Addendum to Factorial Grothendieck polynomials,” preprint (2011); available at tinyurl.com/3dfs7e9s.
A. I. Molev and B. E. Sagan, “A Littlewood–Richardson rule for factorial Schur functions,” Trans. Amer. Math. Soc., 351, 4429–4443 (1999).
C. Monical, B. Pankow, and A. Yong, “Reduced word enumeration, complexity, and randomization,” preprint (2019); arXiv:1901.03247.
A. H. Morales, I. Pak, and G. Panova, “Hook formulas for skew shapes I. q-analogues and bijections,” J. Combin. Theory, Ser. A, 154, 350–405 (2018).
A. H. Morales, I. Pak, and G. Panova, “Hook formulas for skew shapes II. Combinatorial proofs and enumerative applications,” SIAM J. Discrete Math., 31, 1953–1989 (2017).
A. H. Morales, I. Pak, and G. Panova, “Hook formulas for skew shapes III. Multivariate and product formulas,” Algebr. Comb., 2, 815–861 (2019).
A. H. Morales, I. Pak, and G. Panova, “Asymptotics of principal evaluations of Schubert polynomials for layered permutations,” Proc. Amer. Math. Soc., 147, 1377–1389 (2019).
A. H. Morales and D. G. Zhu, “On the Okounkov–Olshanski formula for standard tableaux of skew shapes,” preprint (2020); arXiv:2007.05006.
H. Naruse, “Schubert calculus and hook formula,” talk slides at 73rd Sém. Lothar. Combin., Strobl, Austria (2014); available at tinyurl.com/z6paqzu.
H. Naruse and S. Okada, “Skew hook formula for d-complete posets via equivariant K-theory,” Algebr. Comb., 2, 541–571 (2019).
J.-C. Novelli, I. Pak, and A. V. Stoyanovskii, “A direct bijective proof of the hook-length formula,” Discrete Math. Theor. Comput. Sci., 1, 53–67 (1997).
A. Okounkov and G. Olshanski, “Shifted Schur functions,” St. Petersburg Math. J., 9, 239–300 (1998).
I. Pak, “Hook length formula and geometric combinatorics,” S´em. Lothar. Combin., 46, Art. B46f (2001).
I. Pak, “Skew shape asymptotics, a case-based introduction,” S´em. Lothar. Combin., 84, Art. B84a (2021).
I. Pak and F. Petrov, “Hidden symmetries of weighted lozenge tilings,” Electron. J. Combin., 27, No. 3, #P3.44 (2020).
O. Pechenik, “Cyclic sieving of increasing tableaux and small Schr¨oder paths,” J. Combin. Theory, Ser. A, 125, 357–378 (2014).
O. Pechenik, “Minuscule analogues of the plane partition periodicity conjecture of Cameron and Fon-Der-Flaass,” preprint (2021); arXiv:2107.02679.
O. Pechenik and A. Yong, “Equivariant K-theory of Grassmannians,” Forum Math. Pi, 5, e3 (2017).
T. Pressey, A. Stokke, and T. Visentin, “Increasing tableaux, Narayana numbers and an instance of the cyclic sieving phenomenon,” Ann. Comb., 20, 609–621 (2016).
V. Reiner, B. Tenner, and A. Yong, “Poset edge densities, nearly reduced words, and barely set-valued tableaux,” J. Combin. Theory, Ser. A, 158, 66–125 (2018).
N. J. A. Sloane, The Online Encyclopedia of Integer Sequences, http://oeis.org.
R. P. Stanley, Enumerative Combinatorics, Cambridge Univ. Press, Vol. 1, 2nd edition (2012) and Vol. 2 (1999).
R. P. Stanley, “Some Schubert shenanigans,” preprint (2017); arXiv:1704.00851.
R. A. Sulanke, “The Narayana distribution,” J. Statist. Plann. Inference, 101, 311–326 (2002).
H. Thomas and A. Yong, “A jeu de taquin theory for increasing tableaux, with applications to K-theoretic Schubert calculus,” Algebra Number Theory, 3, 121–148 (2009).
H. Thomas and A. Yong, “Longest increasing subsequences, Plancherel-type measure and the Hecke insertion algorithm,” Adv. Appl. Math., 46, 610–642 (2011).
H. Thomas and A. Yong, “Equivariant Schubert calculus and jeu de taquin,” Ann. Inst. Fourier (Grenoble), 68, 275–318 (2018).
A.Weigandt, “Bumpless pipe dreams and alternating sign matrices,” J. Combin. Theory, Ser. A, 182, Paper 105470 (2021).
Author information
Authors and Affiliations
Corresponding author
Additional information
Published in Zapiski Nauchnykh Seminarov POMI, Vol. 507, 2021, pp. 59–98.
Rights and permissions
About this article
Cite this article
Morales, A.H., Pak, I. & Panova, G. Hook Formulas for Skew Shapes IV. Increasing Tableaux and Factorial Grothendieck Polynomials. J Math Sci 261, 630–657 (2022). https://doi.org/10.1007/s10958-022-05777-0
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10958-022-05777-0