Skip to main content
Log in

Rauzy Fractals and their Number-Theoretic Applications

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we construct and study Rauzy partitions of order n for a certain class of Pisot numbers. These partitions are partitions of a torus into fractal sets. Moreover, the action of a certain shift of the torus on partitions introduced is reduced to rearranging the partition tiles. We obtain a number of applications of partitions introduced to the study of the corresponding shift of the torus. In particular, we prove that partition tiles are sets of bounded remainder with respect to the shift considered. In addition, we obtain a number of applications to the study of sets of positive integers that have a given ending of the greedy expansion by a linear recurrent sequence and to generalized Knuth–Matiyasevich multiplications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Akiyama, “Self affine tiling and Pisot numeration system,” in: Number Theory and Its Applications (K. Gyory and S. Kanemitsu, eds.), Kluwer, Dordrecht (1999), pp. 7–17.

  2. S. Akiyama, “On the boundary of self affine tilings generated by Pisot numbers,” J. Math. Soc. Jpn., 54, No. 2, 83–308 (2002).

    Article  MathSciNet  Google Scholar 

  3. S. Akiyama, G. Barat, V. Berthe, and A. Siegel, “Boundary of central tiles associated with Pisot beta-numeration and purely periodic expansions,” Monats. Math., 155, 377–419 (2008).

    Article  MathSciNet  Google Scholar 

  4. P. Arnoux and S. Ito, “Pisot substitutions and Rauzy fractals,” Bull. Belg. Math. Soc. Simon Stevin., 8, No. 2, 181–207 (2001).

    Article  MathSciNet  Google Scholar 

  5. V. Berthe, A. Siegel, and J. Thuswaldner, “Substitutions, Rauzy fractals, and tilings,” in: Combinatorics, Automata, and Number Theory, Cambridge Univ. Press (2010), pp. 248–323.

  6. E. P. Davletyarova, A. A. Zhukova, and A. V. Shutov, “Geometrization of Fibonacci numeration system and its applications to number theory,” Algebra Anal., 25, No. 6, 1–23 (2013).

    Google Scholar 

  7. P. J. Grabner, A. Pethõ, R. F. Tichy, and G. J. Woeginger, “Associativity of recurrence multiplication,” Appl. Math. Lett., 7, No. 4, 85–90 (1994).

    Article  MathSciNet  Google Scholar 

  8. S. Grepstad and N. Lev, “Sets of bounded discrepancy for multi-dimensional irrational rotation,” Geom. Funct. Anal., 25, No. 1, 87–133 (2015).

    Article  MathSciNet  Google Scholar 

  9. C. Frougny and B. Solomyak, “Finite beta-expansions,” Ergod. Theory Dynam. Sys., 12, 713–723 (1992).

    Article  MathSciNet  Google Scholar 

  10. E. Hecke, “Über analytische Funktionen und die Verteilung von Zahlen mod. eins,” Abhand. Math. Sem. Hamburg Univ., 5, No. 1, 54–76 (1921).

    MATH  Google Scholar 

  11. D. Knuth, “Fibonacci multiplication,” Appl. Math. Lett., 1, No. 2, 3–6 (1988).

    Article  MathSciNet  Google Scholar 

  12. D. V. Kuznetsova and A. V. Shutov, “Exchanged toric tilings, Rauzy substitution, and bounded remainder sets,” Mat. Zametki, 98, No. 6, 878–897 (2015).

    Article  MathSciNet  Google Scholar 

  13. P. Liardet, “Regularities of distribution,” Compos. Math., 61, No. 3, 267–293 (1987).

    MathSciNet  MATH  Google Scholar 

  14. Yu. V. Matiyasevich, “A connection between systems of words-and-lengths equations and Hilbert’s tenth problem,” Zap. Nauchn. Sem. LOMI, 8, 132–144 (1968).

    MathSciNet  MATH  Google Scholar 

  15. N. Pytheas Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, Springer (2001).

  16. G. Rauzy, “Nombres algebriques et substitutions,” Bull. Soc. Math. France., 110, 147–148 (1982).

    Article  MathSciNet  Google Scholar 

  17. A. Siegel and J. Thuswaldner, Topological properties of Rauzy fractals, Soc. Math. France (2009).

  18. A. V. Shutov, “On the speed of attainment of the remainder term exact boundaries in the Hecke–Kesten problem,” Chebyshev. Sb., 14, No. 2, 173–179 (2013).

  19. A. V. Shutov, “On an additive problem with fractional parts,” Nauch. Ved. Belgorod. Univ. Ser. Mat. Fiz., 5 (148), No. 30, 111–120 (2013).

  20. A. V. Shutov, “Derivatives of circle rotations and similarity of orbits,” Zap. Nauchn. Sem. POMI, 314, 272–284 (2004).

    MATH  Google Scholar 

  21. A. A. Zhukova and A. V. Shutov, “Geometrization of numeration systems,” Chebyshev. Sb., 18, No. 4, 221–244 (2017).

    Article  MathSciNet  Google Scholar 

  22. V. G. Zhuravlev, “Rauzy tilings and bounded remainder sets on the torus,” Zap. Nauchn. Sem. POMI, 322, 83–106 (2005).

    MATH  Google Scholar 

  23. V. G. Zhuravlev, “Sums of squares over the Fibonacci ○-ring,” Zap. Nauchn. Sem. POMI, 337, 165–190 (2006).

    MATH  Google Scholar 

  24. V. G. Zhuravlev, “Bounded remainder sets,” Zap. Nauchn. Sem. POMI, 445, 93–174 (2016).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shutov.

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 166, Proceedings of the IV International Scientific Conference “Actual Problems of Applied Mathematics,” Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part II, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shutov, A.V. Rauzy Fractals and their Number-Theoretic Applications. J Math Sci 260, 265–274 (2022). https://doi.org/10.1007/s10958-022-05690-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-022-05690-6

Keywords and phrases

AMS Subject Classification

Navigation