Skip to main content
Log in

Gårding Cones and Bellman Equations in the Theory of Hessian Operators and Equations

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this work, we continue the investigation of algebraic properties of Gårding cones in the space of symmetric matrices. Based on this theory, we propose a new approach to study fully nonlinear differential operators and second-order partial differential equations. We prove comparison theorems of a new type for evolution Hessian operators and establish a relation between Hessian and Bellman equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Caffarelli, L. Nirenberg, and J. Spruck, “The Dirichlet problem for nonlinear second order elliptic equations, III. Functions of the eigenvalues of the Hessian,” Acta Math., 155, 261–301 (1985).

    Article  MathSciNet  Google Scholar 

  2. L. C. Evans, “Classical solutions of fully nonlinear convex second order elliptic equations,” Commun. Pure Appl. Math., 25, 333–363 (1982).

    Article  MathSciNet  Google Scholar 

  3. N. V. Filimonenkova and P. A. Bakusov, “Hyperbolic polynomials and Gårding’s cones,” Mat. Prosveshch. Tret’ya Ser., 20, 143–166 (2016).

    Google Scholar 

  4. L. Gårding, “An inequality for hyperbolic polynomials,” J. Math. Mech., 8, No. 2, 957–965 (1959).

    MathSciNet  MATH  Google Scholar 

  5. N. M. Ivochkina, “Description of stability cones generated by differential operators of the Monge–Ampère type,” Mat. Sb., 22, 265–275 (1983).

    Google Scholar 

  6. N. M. Ivochkina, “Solution of the Dirichlet problem for some equations of the Monge–Ampère type,” Mat. Sb., 128, 403–415 (1985).

    MathSciNet  MATH  Google Scholar 

  7. N. M. Ivochkina, “On classic solvability of the m-Hessian evolution equation,” Am. Math. Soc. Transl., 229, 119–129 (2010).

    MathSciNet  MATH  Google Scholar 

  8. N. M. Ivochkina, “From Gårding’s cones to p-convex hypersurfaces,” Sovrem. Mat. Fundam. Napravl., 45, 94–104 (2012).

    Google Scholar 

  9. N. M. Ivochkina and N. V. Filimonenkova, “On the backgrounds of the theory of m-Hessian equations,” Commun. Pure Appl. Anal., 12, No. 4, 1687–1703 (2013).

    Article  MathSciNet  Google Scholar 

  10. N. M. Ivochkina and N. V. Filimonenkova, “Attractors of m-Hessian evolutions,” J. Math. Sci. (N. Y.), 207, No. 2, 226–235 (2015).

    Article  MathSciNet  Google Scholar 

  11. N. M. Ivochkina and N. V. Filimonenkova, “On algebraic and geometric conditions in the theory of Hessian equations,” J. Fixed Point Theory Appl., 16, No. 1, 11–25 (2015).

    MathSciNet  MATH  Google Scholar 

  12. N. M. Ivochkina and N. V. Filimonenkova, “On new structures in the theory of fully nonlinear equations,” Sovrem. Mat. Fundam. Napravl., 58, 82–95 (2015).

    Google Scholar 

  13. N. M. Ivochkina, S. I. Prokof’eva, and G. V. Yakunina, “Gårding’s cones in contemporary theory of fully nonlinear second-order differential equations,” Problemy Mat. Anal., 64, 63–80 (2012).

  14. N. V. Krylov, “Boundedly nonhomogeneous elliptic and parabolic equations in a domain,” Izv. AN SSSR. Ser. Mat., 47, No. 1, 75–108 (1983).

    Google Scholar 

  15. N. V. Krylov, Nonlinear Second-Order Elliptic and Parabolic Equations [in Russian], Nauka, Moscow (1985).

    MATH  Google Scholar 

  16. N. V. Krylov, “On the first boundary-value problem for nonlinear degenerating elliptic equations,” Izv. AN SSSR, 51, No. 2, 242–269 (1987).

    Google Scholar 

  17. N. V. Krylov, “On general notion of fully nonlinear second order elliptic equation,” Trans. Am. Math. Soc., 347, No. 3, 857–895 (1995).

    Article  MathSciNet  Google Scholar 

  18. M. Lin and N. S. Trudinger, “On some inequalities for elementary symmetric functions,” Bull. Aust. Math. Soc., 50, 317–326 (1994).

    Article  MathSciNet  Google Scholar 

  19. A. I. Nazarov and N. N. Uraltseva, “Convex-monotone hulls and an estimate of the maximum of the solution of a parabolic equation,” J. Soviet Math., 37, 851–859 (1987).

    Article  Google Scholar 

  20. A. V. Pogorelov, Multidimensional Minkowski Problem [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  21. M. V. Safonov, “Harnack’s inequality for elliptic equations and the Hölder property of their solutions,” Zap. Nauch. Sem. LOMI, 12, 272–287 (1983).

    Google Scholar 

  22. M. V. Safonov, “On smoothness of solutions of elliptic Bellman equations near the boundary,” Zap. Nauch. Sem. LOMI, 17, 150–154 (1985).

    MATH  Google Scholar 

  23. N. S. Trudinger, “The Dirichlet problem for the prescribed curvature equations,” Arch. Ration. Mech. Anal., 111, 153–179 (1990).

    Article  MathSciNet  Google Scholar 

  24. N. S. Trudinger, “On the Dirichlet problem for Hessian equations,” Acta Math., 175, 151–164 (1995).

    Article  MathSciNet  Google Scholar 

  25. J. I. Urbas, “Nonlinear oblique boundary value problems for Hessian equations in two dimensions,” Ann. Inst. H. Poincaré Anal. Non Linéaire, 12, 507–575 (1995).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Ivochkina.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 63, No. 4, Differential and Functional Differential Equations, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivochkina, N.M., Filimonenkova, N.V. Gårding Cones and Bellman Equations in the Theory of Hessian Operators and Equations. J Math Sci 259, 833–844 (2021). https://doi.org/10.1007/s10958-021-05665-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-021-05665-z

Navigation