Skip to main content
Log in

Existence of Weak Solutions of Aggregation Integro-Differential Equations

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this work, we investigate the mixed problem for anisotropic integro-differential equations with variable nonlinearity indices. Using the digitization method with respect to time, we prove the existence of a weak solution in a bounded cylinder. We provide a lifetime estimate for the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. A. Alkhutov and V. V. Zhikov, “Theorems on existence and uniqueness of solutions of parabolic equations with variable nonlinearity order,” Mat. Sb., 205, No. 3, 3–14 (2014).

    Article  MathSciNet  Google Scholar 

  2. H. W. Alt and S. Luckhaus, “Quasilinear elliptic-parabolic differential equations,” Math. Z., 183, 311–341 (1983).

    Article  MathSciNet  Google Scholar 

  3. A. O. Belyakov and A. A. Davydov, “Optimization of efficiency of cyclic use of renewable resource,” Tr. IMM UrO RAN, 22, No. 2, 38–46 (2016).

    Article  Google Scholar 

  4. A. Bertozzi and D. Slepcev, “Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion,” Commun. Pur. Appl. Anal., 9, No. 6, 1617–1637 (2010).

    Article  MathSciNet  Google Scholar 

  5. A. Blanchet, J. A. Carrillo, and P. Laurencot, “Critical mass for a Patlak—Keller—Segel model with degenerate diffusion in higher dimensions,” Calc. Var., 35, 133–168 (2009).

    Article  MathSciNet  Google Scholar 

  6. S. Boi, V. Capasso, and D. Morale, “Modeling the aggregative behavior of ants of the species Polyergus rufescens,” Nonlinear Anal. Real World Appl., 1, 163–176 (2000).

    Article  MathSciNet  Google Scholar 

  7. M. Burger, R. C. Fetecau, and Y. Huang, “Stationary states and asymptotic behaviour of aggregation models with nonlinear local repulsion,” SIAM J. Appl. Dyn. Syst., 13, No. 1, 397–424 (2014).

    Article  MathSciNet  Google Scholar 

  8. J. A. Carrillo, S. Hittmeir, B. Volzone, and Y. Yao, “Nonlinear aggregation–diffusion equations: radial symmetry and long time asymptotics,” arxiv:1603.07767v1 [math.ap] (2016).

  9. J. Carrillo and P. Wittbold, “Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems,” J. Differ. Equ., 156, 93–121 (1999).

    Article  MathSciNet  Google Scholar 

  10. N. Dunford and J. T. Schwartz, Linear Operators, Part 1: General Theory [Russian translation], IL, Moscow (1962).

    Google Scholar 

  11. R. Eftimie, G. Vries, M. A. Lewis, and F. Lutscher, “Modeling group formation and activity patterns in self-organizing collectives of individuals,” Bull. Math. Biol., 146, No. 69, 1537–1565 (2007).

    Article  MathSciNet  Google Scholar 

  12. X. Fan, “Anisotropic variable exponent Sobolev spaces and p(x)-Laplacian equations,” Complex Var. Elliptic Equ., 56, No. 7–9, 623–642 (2011).

    Article  MathSciNet  Google Scholar 

  13. S. N. Kruzhkov, “First-order quasilinear equationa with many independent variables,” Mat. Sb., 81 (123), No. 2, 228–255 (1970).

  14. J.-L. Lions and E. Magenes, Nonhomogeneous Boundary Value Problems and Applications [Russian translation], Mir, Moscow (1971).

    Google Scholar 

  15. P. A. Milewski and X. Yang, “A simple model for biological aggregation with asymmetric sensing,” Commun. Math. Sci., 6, 397–416 (2008).

    Article  MathSciNet  Google Scholar 

  16. D. Morale, V. Capasso, and K. Oelschlager, “An interacting particle system modelling aggregation behavior: from individuals to populations,” J. Math. Biol., 50, 49–66 (2005).

    Article  MathSciNet  Google Scholar 

  17. F. Kh. Mukminov, “Uniqueness of renormalized solution of an elliptic-parabolic problem in anisotropic Sobolev–Orlicz spaces,” Mat. Sb., 208, No. 8, 1187–1206 (2017).

  18. F. Otto, “L1-contraction and uniqueness for quasilinear elliptic-parabolic equations,” J. Differ. Equ., 131, 20–38 (1996).

    Article  Google Scholar 

  19. S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics [in Russian], Nauka, Moscow (1988).

    MATH  Google Scholar 

  20. C. M. Topaz and A. L. Bertozzi, “Swarming patterns in a two-dimensional kinematic model for biological groups,” SIAM J. Appl. Math., 65, 152–174 (2004).

    Article  MathSciNet  Google Scholar 

  21. C. M. Topaz, A. L. Bertozzi, and M. A. Lewis, “A nonlocal continuum model for biological aggregation,” Bull. Math. Biol., 68, 1601–1623 (2006).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Vildanova.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 63, No. 4, Differential and Functional Differential Equations, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vildanova, V.F., Mukminov, F.K. Existence of Weak Solutions of Aggregation Integro-Differential Equations. J Math Sci 259, 775–790 (2021). https://doi.org/10.1007/s10958-021-05661-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-021-05661-3

Navigation