Skip to main content
Log in

Some Formulas for Ordinary and Hyper Bessel–Clifford Functions Related to the Proper Lorentz Group

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we show that the matrix elements of some Lorentz group representation operators and bases transform operators acting in the representation space may be expressed in terms of the modified Bessel–Clifford functions and their multi-index analogs introduced by the authors via Delerue hyper Bessel functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz, “Coulomb wave functions expressed in terms of Bessel–Clifford functions,” J. Math. Phys., 33, 111–116 (1954).

    Article  MathSciNet  Google Scholar 

  2. H. Chaggara and N. Ben Romdhane, “On the zeros of the hyper-Bessel function,” Integral Transform. Spec. Funct., 26, No. 2, 96–101 (2015).

    Article  MathSciNet  Google Scholar 

  3. M. A. Chaudhry and S. M. Zubair, “Extended incomplete gamma functions with applications,” J. Math. Anal. Appl., 274, No. 2, 725–745 (2002).

    Article  MathSciNet  Google Scholar 

  4. J. Choi and I. A. Shilin, “A family of series and integrals involving Whittaker, Bessel functions, and their products derivable from the representation of the group SO(2, 1),” Commun. Korean Math. Soc., 32, No. 4, 999–1008 (2017).

    MathSciNet  MATH  Google Scholar 

  5. W. K. Clifford, “On Bessel’s functions,” in: Mathematical Papers, Oxford Univ. Press, London (1882), pp. 346–349.

  6. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New York (2007).

    MATH  Google Scholar 

  7. G. Dattoli, G. Maino, C. Chicco, S. Lorenzutta, and A. Torre, “A unified point of view on the theory of generalized Bessel functions,” Comput. Math. Appl., 30, No. 7, 113–125 (1995).

    Article  MathSciNet  Google Scholar 

  8. P. Delerue, “Sur le calcul symbolique `a n variables et les fonctions hyperbesseliennes,” Ann. Soc. Sci. Bruxelles, 67, No. 3, 229–274 (1953).

    MathSciNet  MATH  Google Scholar 

  9. A. Erd´elyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, Vol. II, McGraw-Hill, New York (1953).

  10. A. Erd´elyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of Integral Transforms, Vol. I, McGraw-Hill, New York (1954).

  11. A. Erd´elyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of Integral Transforms, Vol. II, McGraw-Hill, New York (1954).

  12. R. Gorenflo, A. Kilbas, F. Mainardi, and S. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer, Berlin (2014).

    MATH  Google Scholar 

  13. N. Hayek and F. P´erez-Acosta, “Asymptotic expressions of the Dirac delta function in terms of the Bessel–Clifford functions,” Pure Appl. Math. Sci., 37, 53–56 (1993).

  14. V. Kiryakova, “Transmutation method for solving hyper-Bessel differential equations based on the Poisson–Dimovsky transformation,” Frac. Calc. Appl. Anal., 11, No. 3, 299–316 (2008).

    MathSciNet  MATH  Google Scholar 

  15. V. Kiryakova, “The special functions of fractional calculus as generalized fractional calculus operators of some basic functions,” Comput. Math. Appl., 59, No. 3, 1128–1141 (2010).

    Article  MathSciNet  Google Scholar 

  16. J. R. Klauder, K. A. Penson, and J.-M. Sixdeniers, “Constructing coherent states through solutions of Stieltjes and Hausdorff moment problems,” Phys. Rev. A, 64, 013817 (2001).

    Article  Google Scholar 

  17. M. Klyuchantsev, “Singular differential operators with r−1 parameters and Bessel functions of vector index,” Sib. Math. J., 24, 353–367 (1984).

    Article  MathSciNet  Google Scholar 

  18. J. Paneva-Konovska, “A family of hyper-Bessel functions and convergent series in them,” Frac. Calc. Appl. Anal., 17, No. 4, 1001–1015 (2014).

    Article  MathSciNet  Google Scholar 

  19. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 1, Elementary Functions, Overseas, Amsterdam (1986).

    MATH  Google Scholar 

  20. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 2, Special Functions, Overseas, Amsterdam (1986).

    MATH  Google Scholar 

  21. E. D. Rainville, Special Functions, Macmillan, New York (1960).

    MATH  Google Scholar 

  22. I. A. Shilin and J. Choi, “Certain connections between the spherical and hyperbolic bases on the cone and formulas for related special functions,” Integral Transform. Spec. Funct., 25, No. 5, 374–383 (2014).

    Article  MathSciNet  Google Scholar 

  23. I. A. Shilin and J. Choi, “Certain relations between Bessel and Whittaker functions related to some diagonal and block-diagonal 3 × 3-matrices,” J. Nonlinear Sci. Appl., 10, No. 2, 560–574 (2017).

    Article  MathSciNet  Google Scholar 

  24. H. M. Srivastava, A. Getinkaya, and O. Kiymaz, “A certain generalized Pochhammer symbol and its applications to hypergeometric functions,” Appl. Math. Comput., 226, No. 1, 484–491 (2014).

    MathSciNet  MATH  Google Scholar 

  25. H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Halsted Press, New York (1984).

    MATH  Google Scholar 

  26. N. Ya. Vilenkin, Special Functions and the Theory of Group Representations, Amer. Math. Soc., Providence (1968).

    Google Scholar 

  27. N. Ya. Vilenkin and M. A. Shleinikova, “Integral relations for the Whittaker functions and the representations of the three-dimensional Lorentz group,” Math. USSR Sb., 10, No. 2, 173–179 (1970).

  28. N. S. Witte, “Exact solution for the reflection and diffraction of atomic de Broglie waves by a travelling evanescent laser wave,” J. Phys. A: Math. Gen., 31, 807 (1998).

    Article  Google Scholar 

  29. B. Y. Yasar and M. A. ¨ Ozarslan, “Unified Bessel, modified Bessel, spherical Bessel and Bessel–Clifford functions,” J. Ineq. Spec. Func., 7, No. 4, 77–117 (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Shilin.

Additional information

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 22, No. 5, pp. 195–208, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shilin, I.A., Choi, J. Some Formulas for Ordinary and Hyper Bessel–Clifford Functions Related to the Proper Lorentz Group. J Math Sci 259, 518–527 (2021). https://doi.org/10.1007/s10958-021-05644-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-021-05644-4

Navigation