Skip to main content
Log in

Schwartz-type boundary-value problems for canonical domains in a biharmonic plane

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

A commutative algebra \( \mathbbm{B} \) over the complex field with a basis {e1, e2} satisfying the conditions \( {\left({e}_1^2+{e}_2^2\right)}^2=0,{e}_1^2+{e}_2^2\ne 0 \) is considered. This algebra is associated with the 2-D biharmonic equation. We consider Schwartz-type boundary-value problems on finding a monogenic function of the type Φ (xe1+ye2) = U1(x; y) e1 + U2(x; y) ie1 + U3(x; y) e2 + U4(x; y) ie2, (x; y) ∈ D, when the values of two components—either U1, U3 or U1, U4—are given on the boundary of a domain D lying in the Cartesian plane xOy. For solving those boundary-value problems for a half-plane and for a disk, we develop methods that are based on solution expressions via Schwartz-type integrals and obtain solutions in the explicit form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. F. Kovalev and I. P. Mel’nichenko. “Biharmonic functions on the biharmonic plane,” Reports Acad. Sci. USSR, ser. A, (8), 25–27 (1981).

  2. E. Study. “Über systeme complexer zahlen und ihre anwendungen in der theorie der transformationsgruppen,” Monatshefte für Mathematik, 1(1), 283–354 (1890).

    Article  MathSciNet  Google Scholar 

  3. I. P. Mel’nichenko. “Biharmonic bases in algebras of the second rank,” Ukr. Mat. Zh, 38(2), 224–226 (1986); transl. in Ukr. Math. J., 38(2), 252–254 (1986).

  4. A. Douglis. “A function-theoretic approach to elliptic systems of equations in two variables,” Communications on Pure and Applied Mathematics, 6(2), 259–289 (1953).

    Article  MathSciNet  Google Scholar 

  5. L. Sobrero. “Nuovo metodo per lo studio dei problemi di elasticità, con applicazione al problema della piastra forata,” Ricerche di Ingegneria, 13(2), 255–264 (1934).

    MathSciNet  MATH  Google Scholar 

  6. S. V. Gryshchuk and S. A. Plaksa. “Monogenic functions in a biharmonic algebra,” Ukr. Mat. Zh., 61(12), 1587–1596 (2009); transl. in Ukr. Math. J., 61(12), 1865–1876 (2009).

  7. S. V. Gryshchuk and S. A. Plaksa. “Basic Properties of Monogenic Functions in a Biharmonic Plane.” In: Agranovskii, M.L., Ben-Artzi, M., Galloway, G., Karp, L., Maz’ya, V. (eds.) Complex Analysis and Dynamical Systems V. Contemporary Mathematics, 591. Amer. Math. Soc., Providence, RI, 2013, pp. 127–134.

  8. S. V. Gryshchuk and S. A. Plaksa. “Biharmonic monogenic functions and biharmonic boundary-value problems.” Lindahl K.-O. et al. (eds.). Analysis, Probability, Applications, and Computation. Trends in Mathematics. Proc. of 11th International ISAAC Congress, Växjö (Sweden) 2017, Birkha¨user, pp. 153–160.

  9. V. F. Kovalev. Biharmonic Schwarz problem [in Russian]. Preprint No. 86.16, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev, 1986.

  10. S. V. Gryshchuk and S. A. Plaksa. “Schwartz-Type Boundary Value Problems for Monogenic Functions in a Biharmonic Algebra.” Rogosin S., Çelebi A. (eds.). Analysis as a Life, Dedicated to Heinrich Begehr on the Occasion of his 80th Birthday. Trends in Mathematics. Birkha¨user, 2019, pp. 193–211.

  11. S. V. Gryshchuk and S. A. Plaksa. “A Hypercomplex Method for Solving Boundary Value Problems for Biharmonic Functions.” In: Hošková-Mayerová Š., Flaut C., Maturo F. (eds). Algorithms as a Basis of Modern Applied Mathematics. Studies in Fuzziness and Soft Computing, 404. Springer, Cham, 2021, pp. 231–255.

  12. S. V. Gryshchuk and S. A. Plaksa. “Schwartz-type integrals in a biharmonic plane,” International Journal of Pure and Applied Mathematics, 83(1), 193–211 (2013).

    Article  Google Scholar 

  13. S. V. Gryshchuk and S. A. Plaksa. “Monogenic functions in the biharmonic boundary value problem,” Math. Methods Appl. Sci., 39(11), 2939–2952 (2016).

    Article  MathSciNet  Google Scholar 

  14. S. V. Gryshchuk. “\( \mathbbm{B} \)-valued monogenic functions and their applications to boundary value problems in displacements of 2-D Elasticity.” In: Analytic Methods of Analysis and Differential Equations: AMADE 2015. Rogosin S.V., Dubatovskaya, M.V., Belarusian State University, Minsk, Belarus (Eds.), Cambridge Scientic Publishers Ltd, UK, 2016, pp. 37–47.

  15. S. V. Gryshchuk and S. A. Plaksa. “Reduction of a Schwartz-type boundary value problem for biharmonic monogenic functions to Fredholm integral equations,” Open Math., 15(1), 374–381 (2017).

    Article  MathSciNet  Google Scholar 

  16. S. V. Gryshchuk and S. A. Plaksa. “A Schwartz-Type Boundary Value Problem in a Biharmonic Plane,” Lobachevskii Journal of Mathematics, 38(3), 435–442 (2017).

    Article  MathSciNet  Google Scholar 

  17. S. V. Gryshchuk. “One-dimensionality of the kernel of the system of Fredholm integral equations for a homogeneous biharmonic problem,” Zb. Pr. Inst. Mat. NAN Ukr., 14(1), 128–139 (2017).

    MathSciNet  MATH  Google Scholar 

  18. S. G. Mikhlin. “The plane problem of the theory of elasticity”. In: Trans. Inst. of seismology, Acad. Sci. USSR., no. 65, [in Russian] Acad. Sci. USSR Publ. House, Moscow–Leningrad, 1935.

  19. N. I. Muskhelishvili. Some basic problems of the mathematical theory of elasticity. Fundamental equations, plane theory of elasticity, torsion and bending. English transl. from the 4th Russian edition by R.M. Radok, Noordhoff International Publishing, Leiden, 1977.

  20. A. I. Lurie. Theory of Elasticity. Springer-Verlag, Berlin etc., 2005.

  21. N. S. Kahniashvili. “Research of the plain problems of the theory of elasticity by the method of the theory of potentials,” Trudy Tbil. Univer., 50 [in Russian]. Publ. by Tbil. Univer., Tbilisi, 1953.

  22. Yu. A. Bogan. “On Fredholm integral equations in two-dimensional anisotropic theory of elasticity,” Sib. Zh. Vychisl. Mat., 4(1), 21–30 (2001).

    MATH  Google Scholar 

  23. E. Hille and R. S. Phillips. Functional Analysis and Semi-Groups. Colloquium Publications, 31. American Mathematical Society, Providence, 2000.

  24. V. I. Smirnov. A course of higher mathematics, 3, Part 2. Pergamon Press, Oxford, 1964.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serhii V. Gryshchuk.

Additional information

Dedicated to V.Ya. Gutlyanskii on the occasion of his 80th birthday

Translated from Ukrains’ki˘ı Matematychny˘ı Visnyk, Vol. 18, No. 3, pp. 338–358, July–September, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gryshchuk, S.V., Plaksa, S.A. Schwartz-type boundary-value problems for canonical domains in a biharmonic plane. J Math Sci 259, 37–52 (2021). https://doi.org/10.1007/s10958-021-05599-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-021-05599-6

Keywords

Navigation