Skip to main content
Log in

Remark on Justification of Asymptotics of Spectra of Cylindrical Waveguides with Periodic Singular Perturbations of Boundary and Coefficients

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

To perform an asymptotic analysis of spectra of singularly perturbed periodic waveguides, it is required to estimate remainders of asymptotic expansions of eigenvalues of a model problem on the periodicity cell uniformly with respect to the Floquet parameter. We propose two approaches to this problem. The first is based on the max–min principle and is sufficiently easily realized, but has a restricted application area. The second is more universal, but technically complex since it is required to prove the unique solvability of the problem on the cell for some value of the spectral parameter and the Floquet parameter in a nonempty closed segment, which is verified by constructing an almost inverse operator of the operator of an inhomogeneous model problem in variational setting. We consider boundary value problems on the simplest periodicity cell: a rectangle with a row of fine holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Reed and B. Simon, Methods of Modern Mathematical Physics. III: Scattering Theory, Academic Press, New York etc. (1989).

  2. M. M. Skriganov, “Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators,” Proc. Steklov Inst. Math. 171, 1–121 (1987).

    MathSciNet  MATH  Google Scholar 

  3. P. Kuchment, Floquet Theory for Partial Differential Equations, Birkäuser, Basel (1993).

    Book  Google Scholar 

  4. S. A. Nazarov and B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries, Walter de Gruyter, Berlin etc. (1994).

    Book  Google Scholar 

  5. I. M. Gelfand, “Decomposition into eigenfunctions of an equation with periodic coefficients” [in Russian], Dokl. AN SSSR 73, 1117–1120 (1950).

    Google Scholar 

  6. M. S. Birman and M. Z. Solomyak, Spectral Theory and Selfadjoint Operators in Hilbert Space, Reidel, Dordrecht (1987).

    Book  Google Scholar 

  7. M. Van-Dyke, Perturbation Methods in Fluid Mechanics, Acad. Press, New York etc. (1964).

    MATH  Google Scholar 

  8. A. M. Il’in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Am. Math. Soc., Providence, RI (1992).

    Book  Google Scholar 

  9. V. Maz’ya, S. Nazarov, B. Plamenevskij, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains. Vols. 1, 2, Birkhäuser, Basel (2000).

  10. V. A. Kozlov, V. G. Maz’ya, and A. V. Movchan, Asymptotic Analysis of Fields in Multi-Structures, Clarendon Press, Oxford (1999).

    MATH  Google Scholar 

  11. M. I. Vishik and L. A. Lusternik, “Regular degeneration and boundary layer for linear differential equations with small parameter” [in Russian], Usp. Mat. Nauk 12, No. 5, 3–122 (1957).

    Google Scholar 

  12. F. L. Bakharev, S. A. Nazarov, K.M. Ruotsalainen, “A gap in the spectrum of the Neumann– Laplacian on a periodic waveguide,” Appl. Anal. 92, No. 9, 1889–1915 (2013).

    Article  MathSciNet  Google Scholar 

  13. S. A. Nazarov, “Justification of asymptotic expansions of the eigenvalues of nonselfadjoint singularly perturbed elliptic boundary value problems,” Math. USSR-Sb. 57, No. 2, 317–349 (1987).

    Article  MathSciNet  Google Scholar 

  14. R. Hempel and K. Lineau, “Spectral properties of the periodic media in large coupling limit,” Commun. Partial Differ. Equations 25, 1445–1470 (2000).

    Article  MathSciNet  Google Scholar 

  15. V. V. Zhikov, “On gaps in the spectrum of some elliptic operators in divergent form with periodic coefficients,” St. Petersbg. Math. J. 16, No. 5, 773–790 (2005).

    Article  MathSciNet  Google Scholar 

  16. S. A. Nazarov, “Gap in the essential spectrum of an elliptic formally self-adjoint system of differential equations,” Differ. Equ. 46, No. 5, 730-741 (2010).

    Article  MathSciNet  Google Scholar 

  17. F. L. Bakharev and M.-E. P´erez, “Spectral gaps for the Dirichlet–Laplacian in a 3-D waveguide periodically perturbed by a family of concentrated masses,” Math. Nachr. 291, No. 4, 556–575 (2018).

  18. P. Exner and O. Post, “Convergence of spectra of graph-like thin manifolds,” J. Geom. Phys. 54, No. 1, 77–115 (2005).

    Article  MathSciNet  Google Scholar 

  19. S. A. Nazarov, K. Ruotsalainen, and J. Taskinen, “Essential spectrum of a periodic elastic waveguide may contain arbitrarily many gaps,” Appl. Anal. 89, No. 1, 109–124 (2010).

    Article  MathSciNet  Google Scholar 

  20. O. Post, Spectral Analysis on Graph-Like Spaces, Springer, Berlin (2012).

    Book  Google Scholar 

  21. F. L. Bakharev and S. A. Nazarov, “Gaps in the spectrum of a waveguide composed of domains with different limiting dimensions,” Sib. Math. J. 56, No 4, 575–592 (2015).

    Article  MathSciNet  Google Scholar 

  22. K. Yoshitomi, “Band gap of the spectrum in periodically curved quantum waveguides,” J. Differ. Equations 142, No. 1, 123–166 (1998).

    Article  MathSciNet  Google Scholar 

  23. L. Friedlander and M. Solomyak, “On the spectrum of narrow periodic waveguides,” Russian J. Math. Phys. 15, No. 2, 238–242 (2008).

    Article  MathSciNet  Google Scholar 

  24. S. A. Nazarov, “The localization for eigenfunctions of the Dirichlet problem in thin polyhedra near the vertices,” Sib. Math. J. 54, No. 3, 517–532 (2013).

    Article  MathSciNet  Google Scholar 

  25. S. A. Nazarov, E. Párez, and J. Taskinen, “Localization effect for Dirichlet eigenfunctions in thin non-smooth domains,” Trans. Am. Math. Soc. 368, No. 7, 4787–4829 (2016).

  26. S. A. Nazarov, “Opening of a gap in the continuous spectrum of a periodically perturbed waveguide,” Math. Notes 87, No. 5-6, 738–756 (2010).

    Article  MathSciNet  Google Scholar 

  27. D. I. Borisov and K. V. Pankrashkin, “Gap opening and split band edges in waveguides coupled by a periodic system of small windows,” Math. Notes 93, No. 5, 660-675 (2013).

    Article  MathSciNet  Google Scholar 

  28. V. Chiad`o Piat, S. A. Nazarov, and K. Ruotsalainen, Spectral gaps for water waves above a corrugated bottom,” Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 469, No. 2149, Article ID 20120545 (2013)

  29. S. A. Nazarov, R. Orive-Illera, M. E. Perez-Martinez, “Asymptotic structure of the spectrum in a Dirichlet-strip with double periodic perforations,” Netw. Heterog. Media 14, No. 4, 733–757 (2019).

    Article  MathSciNet  Google Scholar 

  30. S. A. Nazarov, “The asymptotics with respect to a small parameter for the solution of a boundary value problem, elliptic in the sense of Agranovich–Vishik, in a domain with conic point” [in Russian], Probl. Mat. Anal. 7, 146–167 (1979).

    MATH  Google Scholar 

  31. S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary value problems and the algebraic description of their attributes,” Russ. Math. Surv. 54, No. 5, 947–1014 (1999).

    Article  Google Scholar 

  32. V. Chiadò Piat, L. D’Elia, and S. A. Nazarov, “The stiff Neumann problem: asymptotic specialty and “kissing” domains,” Asymptotic Anal. DOI https://doi.org/10.3233/ASY-211701 (2021).

  33. T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin etc. (1966).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Nazarov.

Additional information

Translated from Problemy Matematicheskogo Analiza 111, 2021, pp. 43-65.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez, D., Nazarov, S.A., Orive-Illera, R. et al. Remark on Justification of Asymptotics of Spectra of Cylindrical Waveguides with Periodic Singular Perturbations of Boundary and Coefficients. J Math Sci 257, 597–623 (2021). https://doi.org/10.1007/s10958-021-05506-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-021-05506-z

Navigation