Skip to main content
Log in

Schlesinger Transformations for Algebraic Painlevé VI Solutions

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Schlesinger (S) transformations can be combined with a direct rational (R) pull-back of a hypergeometric 2 × 2 system of ODEs to obtain \( {RS}_4^2 \)-pullback transformations to isomonodromic 2 × 2 Fuchsian systems with 4 singularities. The corresponding Painlevé VI solutions are algebraic functions, possibly in different orbits under Okamoto transformations. The paper demonstrates direct computations (involving polynomial syzygies) of Schlesinger transformations that affect several singular points at once, and presents an algebraic procedure of computing algebraic Painlevé VI solutions without deriving full RS-pullback transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. V. Andreev and A. V. Kitaev, “Some Examples of \( {RS}_3^2 \) (3)-Transformations of Ranks 5 and 6 as the Higher Order Transformations for the Hypergeometric Function,” Ramanujan J., 7, No. 4, 455–476 (2003).

    Article  MathSciNet  Google Scholar 

  2. F. V. Andreev and A. V. Kitaev, “Transformations \( {RS}_4^2 \) (3) of the Ranks ≤ 4 and Algebraic Solutions of the Sixth Painlevé Equation,” Comm. Math. Phys., 228, 151–176 (2002).

    Article  MathSciNet  Google Scholar 

  3. P. Boalch, “The fifty-two icosahedral solutions to Painlevé VI,” Reine Angew. Math., 596, 183–214 (2006).

    MathSciNet  MATH  Google Scholar 

  4. P. Boalch, “Some explicit solutions to the Riemann-Hilbert problem,” in: Differential Equations and Quantum Groups, IRMA Lectures in Mathematics and Theoretical Physics, Vol. 9 (2006), pp. 85–112.

  5. D. Cox, “What is the role of algebra in applied mathematics,” Notices AMS, 52, No. 10, 1193–1198 (2005).

  6. D. Cox, T. W. Sederberg, and F. Chen, “The moving line ideal basis of planar rational curves,” Comp. Aided Geom. Design, 15, 803C827 (1998).

  7. Ch. F. Doran, “Algebraic and Geometric Isomonodromic Deformations,” J. Diff. Geometry, 59, 33–85 (2001).

    MathSciNet  MATH  Google Scholar 

  8. B. Dubrovin, “Geometry of 2D topological field theories,” in: M. Francaviglia and S. Greco (eds.), Integrable Systems and Quantum Groups, Springer Lect. Notes Math., 1620. (1995), pp. 120–348.

  9. B. Dubrovin and M. Mazzocco, “Monodromy of certain Painlevé–VI transcendents and reflection groups,” Invent. Math., 141, 55–147 (2000).

    Article  MathSciNet  Google Scholar 

  10. D. Eisenbud, Geometry of Syzygies, Graduate Texts in Mathematics, No. 229, Springer Verlag (2005).

  11. H. Flashka and A. C. Newell, “Monodromy and spectrum preserving deformations,” I Commun. Math. Phys., 76, 67–116 (1980).

    MathSciNet  Google Scholar 

  12. R. Fuchs, “Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen,” Math. Ann., 70, 525–549 (1911).

    Article  MathSciNet  Google Scholar 

  13. D. Hilbert, “Über die Theorie der algebraischen Formen,” Math. Ann., 36, 473–534 (1890).

    Article  MathSciNet  Google Scholar 

  14. N. J. Hitchin, “A lecture on the octahedron,” Bull. London Math. Soc., 35, 577–600 (2003).

    Article  MathSciNet  Google Scholar 

  15. N.J. Hitchin, “Poncelet polygons and the Painlevé equations,” in: Geometry and Analysis, Bombay (1992), Tata Inst. Fund. Res., Bombay (1995), pp. 151–185.

  16. M. Jimbo and T. Miwa, “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients II,” Physica, 2D, 407–448 (1981).

    MathSciNet  MATH  Google Scholar 

  17. M. Kato, T. Mano, and J. Sekiguchi, “Flat structure and potential vector fields related with algebraic solutions to Painlevé VI equation,” Opuscula Math., 2, 201–252 (2018).

    Article  Google Scholar 

  18. A. V. Kitaev, “Quadratic transformations for the sixth Painlevé equation,” Lett. Math. Phys., 21, 105–111 (1991).

    Article  MathSciNet  Google Scholar 

  19. A. V. Kitaev, “Special Functions of the Isomonodromy Type, Rational Transformations of Spectral Parameter, and Algebraic Solutions of the Sixth Painlevé Equation,” St. Petersburg Math. J., 14, No. 3, 453–465 (2003);

    MathSciNet  MATH  Google Scholar 

  20. A. V. Kitaev, “Grothendieck’s Dessins d’Enfants, Their Deformations and Algebraic Solutions of the Sixth Painlev´e and Gauss Hypergeometric Equations,” St. Petersburg Math. J., 17, No. 1, 224–275 (2005).

    Google Scholar 

  21. F. Klein, Vorlesungen über das Ikosaedar, B. G. Teubner, Leipzig (1884).

    Google Scholar 

  22. O. Lisovyy and Y. Tykhyy, “Algebraic solutions of the sixth Painlev´e equation,” J. Geom. Phys., 85, 124–163 (2014).

    Article  MathSciNet  Google Scholar 

  23. F. Meyer, “Zur Theorie der reducibeln ganzen Functionen von n Variabeln,” Math. Ann., 30, 30–74 (1887).

    Article  MathSciNet  Google Scholar 

  24. H. Movasati and S. Reiter, “Painlevé VI equations with algebraic solutions and family of curves,” Experim. Math., 19, No. 2, 161–173 (2010).

    Article  Google Scholar 

  25. U. Mugan and A. Sakka, “Schlesinger transformations for Painlevé VI equation,” J. Math. Phys., 36, 1284–1298 (1995).

    Article  MathSciNet  Google Scholar 

  26. Y. Ohyama and S. Okumura, “R. Fuch’s problem of the Painlevé equations from the first to the fifth,” in: A. Dzhamay, K. Maruno, and V. U. Pierce, Algebraic and Geometric Aspects of Integrable Systems and Random Matrices, Contemp. Math., 593, AMS, Providence (2013), pp. 163–178.

  27. K. Okamoto, “Studies on the Painlevé Equations. I. Sixth Painlevé Equation PV I,” Annali Mat. Pura Appl., 146, 337–381 (1987).

    Article  MathSciNet  Google Scholar 

  28. R. Vidunas, “Algebraic Transformations of Gauss Hypergeometric,” Funkcialaj Ekvacioj, 52, 139–180 (2009).

    Article  MathSciNet  Google Scholar 

  29. R. Vidunas and A. V. Kitaev, “Quadratic Transformations of the Sixth Painlevé Equation,” Math. Nach., 280, No. 16, 1834–1855 (2007).

    Article  Google Scholar 

  30. R. Vidunas and A. V. Kitaev, “Computation of highly ramified coverings,” Math. Comput., 78, 2371–2395 (2009).

    Article  MathSciNet  Google Scholar 

  31. R. Vidunas and A. V. Kitaev, “Computation of RS-pullback transformations for algebraic Painlevé VI solutions,” J. Math. Sci., 213, 706–722 (2016).

    Article  MathSciNet  Google Scholar 

  32. R. Vidunas and J. Sekiguchi, Differential relations for almost Belyi maps, Accepted for the proceedings of the workshop “Grothendieck-Teichm¨uller theories”, July 2016, the Chern Institute, Tianjin, China; arxiv.org/abs/1701.03302.

  33. A. Zvonkin, “Megamaps: construction and examples,” in: Discrete Math. Theor. Comput. Science Proceedings AA (2001), pp. 329–340.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Vidunas.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 487, 2019, pp. 106–139.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidunas, R., Kitaev, A.V. Schlesinger Transformations for Algebraic Painlevé VI Solutions. J Math Sci 257, 495–517 (2021). https://doi.org/10.1007/s10958-021-05498-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-021-05498-w

Navigation