Skip to main content
Log in

Relation between Fourier series and Wiener algebras

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

New relations between the Banach algebras of absolutely convergent Fourier integrals of complex-valued measures of Wiener and various issues of trigonometric Fourier series (see classical monographs by A. Zygmund [1] and N. K. Bary [2]) are described. Those bilateral interrelations allow one to derive new properties of the Fourier series from the known properties of the Wiener algebras, as well as new results to be obtained for those algebras from the known properties of Fourier series. For example, criteria, i.e. simultaneously necessary and sufficient conditions, are obtained for any trigonometric series to be a Fourier series, or the Fourier series of a function of bounded variation, and so forth. Approximation properties of various linear summability methods of Fourier series (comparison, approximation of function classes and single functions) and summability almost everywhere (often with the set indication) are considered.

The presented material was reported by the author on 12.02.2021 at the Zoom-seminar on the theory of real variable functions at the Moscow State University.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Zygmund, Trigonometric Series, Cambridge University Press, Cambridge (2003).

    Book  MATH  Google Scholar 

  2. N. K. Bary, A Treatise on Trigonometric Series. Pergamon Press, New York (1964).

    MATH  Google Scholar 

  3. B. M. Makarov and A. N. Podkorytov, Lectures on Real Analysis [in Russian]. BHV-Petersburg, St.-Petersburg (2011).

  4. R. Trigub and E. Belinsky, Fourier Analysis and Approximation of Functions. Kluwer–Springer, Berlin (2004).

    Book  Google Scholar 

  5. E. Liflyand, S. Samko, and R. Trigub, “The Wiener algebra of absolutely convergent Fourier integrals: An overview,” Anal. Math. Phys., 2(1), 1–68 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Beurling, “On the spectral synthesis of bounded functions,” Acta Math., 81, 225–238 (1949).

    Article  MathSciNet  MATH  Google Scholar 

  7. E. S. Belinsky, E. R. Liflyand, and R. M. Trigub, “The Banach algebra A_ and its properties,” Fourier Anal. Appl., 3, 103–120 (1997).

    Article  MathSciNet  Google Scholar 

  8. W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 2, Wiley, New York (1966).

    MATH  Google Scholar 

  9. R. R. Goldberg, “Restrictions of Fourier transforms and extension of Fourier sequences,” J. Appr. Theory, 3, 149–155 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  10. E. Liflyand and R. Trigub, “Wiener algebras and trigonometric series in a coordinated fashion,” Constr. Appr., 53 (2021).

  11. R. M. Trigub, “Summability of trigonometric Fourier series at d-points and a generalization of the Abel–Poisson method,” Izv. Ross. Akad. Nauk Ser. Math., 79(4), 838–858 (2015).

    MathSciNet  MATH  Google Scholar 

  12. E. Liflyand and R. Trigub, “Conditions for the absolute convergence of Fourier integrals,” J. Appr. Theory, 163(4), 438–459 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Liflyand, “On absolute convergence of Fourier integrals,” Real Anal. Exch., 36(2), 349–356 (2010/2011).

  14. A. Miyachi, “On some singular Fourier multipliers,” J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28, 267–315 (1981).

    MathSciNet  MATH  Google Scholar 

  15. H. S. Shapiro, “Some Tauberian theorem with applications to approximation theory,” Bull. Amer. Math. Soc., 74, 500–504 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  16. R. M. Trigub, “Linear summation methods and absolute convergence of Fourier series,” Izv. Akad. Nauk SSSR Ser. Matem., 32(1), 24–49 (1968).

    MathSciNet  Google Scholar 

  17. R. M. Trigub, “On comparison of linear differential operators,” Matem. Zamet., 82(3), 426–440 (2007).

    MathSciNet  Google Scholar 

  18. S. B. Stechkin, “On the order of best approximations for continuous functions,” Izv. Akad. Nauk SSSR Ser. Matem., 15(3), 219–242 (1951).

    MathSciNet  Google Scholar 

  19. A. F. Timan, Theory of Approximation of Functions of a Real Variable, Dover, New York (1994).

    Google Scholar 

  20. R. A. Devore, and G. G. Lorentz, Constructive Approximation, Springer, Berlin (1993).

    Book  MATH  Google Scholar 

  21. R. M. Trigub, “Exact order of approximation of periodic functions by linear polynomial operators,” East J. Appr., 15(1), 25–50 (2009).

    MathSciNet  MATH  Google Scholar 

  22. Yu. Kolomoitsev and S. Tikhonov, “Hardy–Littlewood and Ulyanov inequalities,” Mem. Amer. Math. Soc. arXiv:1711.08163.2017 (to be published).

  23. V. A. Baskakov and S. A. Telyakovskii, “On the approximation of differentiable functions by Fejér sums,” Matem. Zamet., 32(2), 129–140 (1982).

    Google Scholar 

  24. R. M. Trigub, “Constructive characteristics of some function classes,” Izv. Akad. Nauk SSSR Ser. Matem., 29(3), 615–630 (1965).

    Google Scholar 

  25. V. V. Zhuk, “On the approximation of periodic functions by linear summation methods for Fourier series,” Dokl. Akad. Nauk SSSR, 173(1), 30–33 (1967).

    MathSciNet  Google Scholar 

  26. Z. Ditzian and K. G. Ivanov, “Strong converse inequalities,” J. Anal. Math., 61, 61–111 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  27. R. M. Trigub, (2013). “Exact order of approximation of periodic functions with Bernstein–Stechkin polynomials,” Matem. Sborn., 204(12), 127–146.

    MathSciNet  Google Scholar 

  28. V. I. Ivanov, “Direct and converse theorems of the theory of approximation of periodic functions in the works by S. B. Stechkin and their development,” Trudy IMM UrO Ross. Akad. Nauk, 16(4), 5–17 (2010).

    Google Scholar 

  29. R. M. Trigub, “On various moduli of smoothness and K-functionals,” Ukr. Matem. Zh., 72 (7), 971–996 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  30. R. M. Trigub, “Asymptotics of the approximation of continuous periodic functions by linear means of their Fourier series,” Izv. Akad. Nauk SSSR Ser. Matem., 84(3), 185–202 (2020).

    MathSciNet  Google Scholar 

  31. E. Liflyand and U. Stadtmüller, A multidimensional Euler–Maclaurin formula and its application,” in: Complex Analysis and Dynamical Systems V, Contemporary Mathematics, eds. M. Agranovsky et al., 591, AMS, Providence, RI, pp. 183–194 (2013).

  32. J. Arias de Reyna, Pointwise Convergence of Fourier Series, Springer, Berlin (2002).

    Book  MATH  Google Scholar 

  33. H. Hahn, “über Fejers Summierung der Fourierschen Reihen,” Jahres-bericht der D. M. V., 25, 359–366 (1916).

    Google Scholar 

  34. R. M. Trigub, “Almost everywhere summability of Fourier series with indication of the set of convergence,” Matem. Zamet., 100(1), 163–179 (2016).

    MathSciNet  MATH  Google Scholar 

  35. R. M. Trigub, “Norms of linear functionals, summability of trigonometric Fourier series and Wiener algebras,” in: Operator Theory and Harmonic Analysis, Vol. 1, New General Trends and Advances of the Theory, edited by A. Karapetyants, V, Kravchenko, and E. Liflyand, Springer, Berlin (2021).

  36. L. V. Zhizhiashvili, “Generalization of a Martsinkevich theorem,” Izv. Akad. Nauk SSSR Ser. Matem., 32(5), 1112–1122 (1968).

    Google Scholar 

  37. M. I. Dyachenko, “Some problems in the theory of multiple trigonometric series,” Usp. Matem. Nauk, 47(5), 97–162 (1992).

    MathSciNet  Google Scholar 

  38. R. M. Trigub, “Fourier transform of the function of two variables depending only on the absolute value maximum of those variables,” Matem. Sborn., 209(5), 166–186 (2018).

    Google Scholar 

  39. E. S. Belinsky, “Summability of multiple Fourier series at Lebesgue points,” Teor. Funk. Funk. Anal. Applik., 23, 3–12 (1975).

    MathSciNet  Google Scholar 

  40. N. A. Zagorodnii and R. M. Trigub, “On a question by Salem,” in: The Theory of Functions and Mappings [in Russian], Naukova Dumka, Kiev, pp. 97–101 (1979).

  41. L. Carleson, “Appendix to the paper of J.-P. Kahane and Y. Katznelson,” in: Stud. Pure Math. Mem. P. Turan, Budapest, p. 411–413 (1983).

  42. E. S. Belinsky, “On the summability of Fourier series with the method of lacunary arithmetic means,” Anal. Math., 10(4), 275–282 (1984).

    Article  MathSciNet  Google Scholar 

  43. O. I. Kuznetsova, “Strong summability of multiple Fourier series, and Sidon-type inequalities,” Ukr. Math. J., 50, 1860–1866 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  44. O. D. Gabisoniya, “On points of strong summability of Fourier series,” Matem. Zamet., 14(5), 615–626 (1973).

    MathSciNet  Google Scholar 

  45. B. S. Kashin and A. A. Saakyan, Orthogonal Series. AFTs, Moscow (1999).

    MATH  Google Scholar 

  46. S. B. Stechkin, (1961). “On the approximation of periodic functions by Fejér sums,” Trudy MIAN SSSR, 62, 48–60.

    Google Scholar 

  47. D. Gát, “Cesàro means of subsequences of partial sums of trigonometric Fourier series,” Constr. Appr., 49, 59–101 (2019).

    Article  MATH  Google Scholar 

  48. V. N. Temlyakov, “On absolute summation of Fourier series by subsequences,” Analysis Math., 8, 71–77 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  49. S. A. Telyakovskii, “Series of modules of blocks of trigonometric series members (A review),” Fundam. Prikl. Matem., 18(5), 209–216 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roald M. Trigub.

Additional information

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 18, No. 1, pp. 80–103, January–March, 2021.

Translated from Russian by O.I. Voitenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trigub, R.M. Relation between Fourier series and Wiener algebras. J Math Sci 256, 785–802 (2021). https://doi.org/10.1007/s10958-021-05461-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-021-05461-9

Keywords

Navigation