Skip to main content
Log in

Logarithmic Potential and Generalized Analytic Functions

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The study of the Dirichlet problem in the unit disk 𝔻 with arbitrary measurable data for harmonic functions is due to the famous dissertation of Luzin [31]. Later on, the known monograph of Vekua [48] has been devoted to boundary-value problems (only with Hölder continuous data) for the generalized analytic functions, i.e., continuous complex valued functions h(z) of the complex variable z = x + iy with generalized first partial derivatives by Sobolev satisfying equations of the form 𝜕zh + ah + b\( \overline{h} \) = c ; where it was assumed that the complex valued functions a; b and c belong to the class Lp with some p > 2 in smooth enough domains D in ℂ.

The present paper is a natural continuation of our previous articles on the Riemann, Hilbert, Dirichlet, Poincar´e and, in particular, Neumann boundary-value problems for quasiconformal, analytic, harmonic, and the so-called A−harmonic functions with boundary data that are measurable with respect to logarithmic capacity. Here, we extend the corresponding results to the generalized analytic functions h : D → ℂ with the sources g : 𝜕zh = g ∈ Lp, p > 2 , and to generalized harmonic functions U with sources G : △U = G ∈ Lp, p > 2.

This paper contains various theorems on the existence of nonclassical solutions of the Riemann and Hilbert boundary-value problems with arbitrary measurable (with respect to logarithmic capacity) data for generalized analytic functions with sources. Our approach is based on the geometric (theoretic-functional) interpretation of boundary-values in comparison with the classical operator approach in PDE. On this basis, it is established the corresponding existence theorems for the Poincar´e problem on directional derivatives and, in particular, for the Neumann problem to the Poisson equations △U = G with arbitrary boundary data that are measurable with respect to logarithmic capacity. These results can be also applied to semilinear equations of mathematical physics in anisotropic and inhomogeneous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ahlfors and A. Beurling, “The boundary correspondence under quasiconformal mappings,” Acta Math., 96, 125–142 (1956).

    Article  MathSciNet  Google Scholar 

  2. F. Bagemihl and W. Seidel, “Regular functions with prescribed measurable boundary-values almost everywhere,” Proc. Nat. Acad. Sci. U.S.A., 41(10), 740–743 (1955).

    Article  MathSciNet  Google Scholar 

  3. H. Begehr, Complex analytic methods for partial differential equations. An introductory text. World Scientific Publishing Co., Inc, River Edge, NJ (1994).

  4. H. Begehr and G. Ch. Wen, Nonlinear elliptic boundary value problems and their applications. Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 80. Longman, Harlow (1996).

  5. J. Becker and Ch. Pommerenke, “Hölder continuity of conformal mappings and nonquasiconformal Jordan curves,” Comment. Math. Helv., 57(2), 221–225 (1982).

    Article  MathSciNet  Google Scholar 

  6. L. Carleson, Selected Problems on Exceptional Sets. Van Nostrand Co., Inc, Princeton etc. (1971).

  7. O. Dovgoshey, O. Martio, V. Ryazanov, and M. Vuorinen, “The Cantor function,” Expo. Math., 24(1), 1–37 (2006).

    Article  MathSciNet  Google Scholar 

  8. P. L. Duren, Theory of Hp spaces. Pure and Applied Mathematics, Vol. 38. Academic Press, New York–London (1970).

  9. A. S. Efimushkin and V. I. Ryazanov, “On the Riemann–Hilbert problem for the Beltrami equations in quasidisks,” Ukr. Mat. Bull., 12(2), 190–209 (2015); transl. in J. Math. Sci., 211(5), 646–659 (2015).

  10. H. Federer, Geometric Measure Theory. Springer-Verlag, Berlin (1969).

    MATH  Google Scholar 

  11. M. Fékete, “Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten,” Math. Z., 17, 228–249 (1923).

    Article  MathSciNet  Google Scholar 

  12. F. D. Gakhov, Boundary-value problems. Dover Publications. Inc, New York (1990).

    MATH  Google Scholar 

  13. F. W. Gehring and O. Martio, “Lipschitz classes and quasiconformal mappings,” Ann. Acad. Sci. Fenn. Ser. A I Math., 10, 203–219 (1985).

    Article  MathSciNet  Google Scholar 

  14. F. W. Gehring and B. P. Palka, “Quasiconformally homogeneous domains,” J. Analyse Math., 30, 172–199 (1976).

    Article  MathSciNet  Google Scholar 

  15. G. M. Goluzin, Geometric theory of functions of a complex variable. Transl. of Math. Monographs. 26. American Mathematical Society, Providence, R.I. (1969).

  16. M. Gromov, Partial differential relations. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Springer-Verlag, Berlin (1986).

  17. V. Gutlyanskii, O. Nesmelova, and V. Ryazanov, “On quasiconformal maps and semi-linear equations in the plane,” Ukr. Mat. Bull., 14(2), 161–191 (2017); transl. in J. Math. Sci., 229(1), 7–29 (2018).

  18. V. Gutlyanskii, O. Nesmelova, and V. Ryazanov, “To the theory of semi-linear equations in the plane,” Ukr. Mat. Bull., 16(1), 105–140 (2019); transl. in J. Math. Sci., 242(6), 833–859 (2019).

  19. V. Gutlyanskii, O. Nesmelova, and V. Ryazanov, “On a quasilinear Poisson equation in the plane,” Anal. Math. Phys., 10(1), Paper No. 6, 1–14 (2020).

  20. V. Gutlyanskii, O. Nesmelova, and V. Ryazanov, “Semi-linear equations and quasiconformal mappings,” Complex Var. Elliptic Equ., 65(5), 823–843 (2020).

    Article  MathSciNet  Google Scholar 

  21. V. Ya. Gutlyanskii, V. I. Ryazanov, E. Yakubov, and A. S. Yefimushkin, “On Hilbert boundary-value problem for Beltrami equation,” Ann. Acad. Sci. Fenn. Math., 45(2), 957–973 (2020).

  22. V. Gutlyanskii, V. Ryazanov, and A. Yefimushkin, “On the boundary-value problems for quasiconformal functions in the plane,” Ukr. Mat. Bull., 12(3), 363–389 (2015); transl. in J. Math. Sci., 214(2), 200–219 (2016).

  23. J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear potential theory of degenerate elliptic equations. Oxford Mathematical Monographs. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1993).

  24. D. Hilbert, Über eine Anwendung der Integralgleichungen auf eine Problem der Funktionentheorie. Verhandl. des III Int. Math. Kongr., Heidelberg (1904).

    MATH  Google Scholar 

  25. L. Hörmander, The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis. Grundlehren der Mathematischen Wissenschaften. 256. Springer-Verlag, Berlin (1983).

  26. P. Koosis, Introduction to Hp spaces. Cambridge Tracts in Mathematics. 115. Cambridge Univ. Press, Cambridge (1998).

  27. M. A. Krasnosel’skii, P. P. Zabreiko, E. I. Pustyl’nik, and P. E. Sobolevskii, Integral operators in spaces of summable functions. Monographs and Textbooks on Mechanics of Solids and Fluids, Mechanics: Analysis. Noordhoff International Publishing, Leiden (1976).

    Book  Google Scholar 

  28. O. A. Ladyzhenskaya and N. N. Ural’tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York (1968).

    MATH  Google Scholar 

  29. N. S. Landkof, Foundations of modern potential theory. Die Grundlehren der mathematischen Wissenschaften. 180. Springer-Verlag, New York–Heidelberg (1972).

  30. N. N. Luzin, “On the main theorem of integral calculus,” Mat. Sb., 28, 266–294 (1912) [in Russian].

    Google Scholar 

  31. N. N. Luzin, Integral and trigonometric series [in Russian], Dissertation, Moskwa (1915).

    Google Scholar 

  32. N. N. Luzin, Integral and trigonometric series [in Russian]. Editing and commentary by N. K. Bari and D. E. Men’shov. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow–Leningrad (1951).

  33. N. Luzin, “Sur la notion de l’integrale,” Annali Mat. Pura e Appl., 26(3), 77–129 (1917).

    Article  Google Scholar 

  34. N. I. Muskhelishvili, Singular integral equations. Boundary problems of function theory and their application to mathematical physics. Dover Publications Inc., New York (1992).

  35. R. Nevanlinna, Eindeutige analytische Funktionen. Ann Arbor, Michigan (1944).

    MATH  Google Scholar 

  36. K. Noshiro, Cluster sets. Springer–Verlag, Berlin etc. (1960).

  37. Ch. Pommerenke, Boundary behaviour of conformal maps. Grundlehren der Mathematischen Wissenschaften. Fundamental Principles of Mathematical Sciences, 299. Springer-Verlag, Berlin (1992).

  38. I. I. Priwalow, Randeigenschaften analytischer Funktionen. Hochschulbücher für Mathematik. 25. Deutscher Verlag der Wissenschaften, Berlin (1956).

  39. T. Ransford, Potential theory in the complex plane. London Mathematical Society Student Texts. 28. Cambridge University Press, Cambridge (1995).

  40. V. Ryazanov, “On the Riemann–Hilbert problem without index,” Ann. Univ. Buchar. Math. Ser. 5(LXIII)(1), 169–178 (2014).

  41. V. Ryazanov, “On Hilbert and Riemann problems. An alternative approach,” Ann. Univ. Buchar. Math. Ser. 6(LXIV)(2), 237–244 (2015).

  42. V. Ryazanov, “Infinite dimension of solutions of the Dirichlet problem,” Open Math. (the former Central European J. Math.), 13(1), 348–350 (2015).

    MathSciNet  MATH  Google Scholar 

  43. V. Ryazanov, “On Neumann and Poincar´e problems for Laplace equation,” Anal. Math. Phys., 7(3), 285–289 (2017).

    Article  MathSciNet  Google Scholar 

  44. V. Ryazanov, “On Hilbert and Riemann problems for generalized analytic functions and applications,” Anal. Math. Phys., 11(5). Published online: 22 November 2020 (2021).

  45. S. Saks, Theory of the integral. Warsaw; Dover Publications Inc., New York (1964).

  46. S. L. Sobolev, Applications of functional analysis in mathematical physics. Transl. of Math. Mon., 7. AMS, Providence, R.I. (1963).

  47. Th. Trogdon and Sh. Olver, Riemann–Hilbert problems, their numerical solution, and the computation of nonlinear special functions. Society for Industrial and Applied Mathematics (SIAM). Philadelphia (2016).

  48. I. N. Vekua, Generalized analytic functions. Pergamon Press. London–Paris–Frankfurt; Addison–Wesley Publishing Co., Inc., Reading, Mass. (1962).

  49. A. Yefimushkin, “On Neumann and Poincar´e problems in A–harmonic analysis,” Advances in Analysis, 1(2), 114–120 (2016).

    Article  MathSciNet  Google Scholar 

  50. A. Yefimushkin and V. Ryazanov, “On the Riemann-Hilbert problem for the Beltrami equations,” Complex analysis and dynamical systems VI. Part 2, 299–316. Contemp. Math., 667. Israel Math. Conf. Proc., Amer. Math. Soc., Providence, RI (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Gutlyanskiĭ.

Additional information

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 18, No. 1, pp. 12–36, January–March, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutlyanskiĭ, V., Nesmelova, O., Ryazanov, V. et al. Logarithmic Potential and Generalized Analytic Functions. J Math Sci 256, 735–752 (2021). https://doi.org/10.1007/s10958-021-05457-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-021-05457-5

Keywords

Navigation