K. V. Avramov, “On the aeroelastic interaction of plates with vortex-free ideal gas flows,” Dop. NAN Ukrainy, No. 9, 57–64 (2013).
K. V. Avramov and Yu. V. Mikhlin, Nonlinear Dynamics of Elastic Systems, Vol. 1: Models, Methods, Phenomena [in Russian], NITs “Regular and Chaotic Dynamics,” Moscow (2010).
K. V. Avramov, Yu. V. Mikhlin, V. N. Romanenko, and A. A. Kireenkov, “Bifurcations of steady-state self-excited oscillations of flexural plates interacting with potential gas flows,” Prykl. Hidromekh., 16, No. 1, 3–9 (2014).
Google Scholar
S. M. Belotserkovskii and B. K. Skripach, Aerodynamic Derivatives for a Flying Vehicle and a Wing at Subsonic Velocities [in Russian], Nauka, Moscow (1975).
E. Albano and W. P. Rodden, “A doublet-lattice method for calculating lift distributions on oscillating surfaces in subsonic flows,” AIAA Journal, 7, No. 2, 279–285 (1969); https://doi.org/10.2514/3.5086.
K. V. Avramov, E. A. Strel’nikova, and C. Pierre, “Resonant many-mode periodic and chaotic self-sustained aeroelastic vibrations of cantilever plates with geometrical nonlinearities in incompressible flow,” Nonlin. Dynam., 70, No. 2, 1335–1354 (2012); https://doi.org/10.1007/s11071-012-0537-5.
Article
Google Scholar
R. H. Djojodihardjo and S. E. Widnall, “A numerical method for the calculation of nonlinear, unsteady lifting potential flow problems,” AIAA Journal, 7, No. 10, 2001–2009 (1969); https://doi.org/10.2514/3.5494.
E. H. Dowell, E. F. Crawley, H. C. Curtiss, Jr., D. A. Peters, R. H. Scanlan, and F. Sisto, A Modern Course in Aeroelasticity, Kluwer, New York (1995).
MATH
Google Scholar
J. L. Hess, “Review of integral-equation techniques for solving potential-flow problems with emphasis of the surface-source method,” Comput. Methods Appl. Mech., 5, No. 2, 145–196 (1975); https://doi.org/10.1016/0045-7825(75)90051-1.
J. Katz, “Calculation of the aerodynamic forces on automotive lifting surfaces,” Trans. ASME, J. Fluids Eng., 107, No. 4, 438–443 (1985); https://doi.org/10.1115/1.3242507.
L. Meirovitch, Elements of Vibration Analysis, McGraw Hill, New York (1986).
MATH
Google Scholar
D. T. Mook, and B. Dong, “Perspective: numerical simulations of wakes and blade-vortex interaction,” Trans. ASME, J. Fluids Eng., 116, No. 1, 5–21 (1994); https://doi.org/10.1115/1.2910242.
L. Morino and C. C. Kuo, “Subsonic potential aerodynamic for complex configurations: a general theory,” AIAA Journal, 12, No. 2, 191–197 (1974); https://doi.org/10.2514/3.49191.
T. W. Strganac and D. T. Mook, “Numerical model of unsteady subsonic aeroelastic behavior,” AIAA Journal, 28, No. 5, 903–909 (1990); https://doi.org/10.2514/3.25137.