Skip to main content
Log in

On Variations of the Neumann Eigenvalues of p-Laplacian Generated by Measure Preserving Quasiconformal Mappings

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We study variations of the first nontrivial eigenvalue of the two-dimensional p-Laplace operator, p > 2, generated by measure preserving quasiconformal mappings. The study is based on the geometric theory of composition operators in Sobolev spaces and sharp embedding theorems. Using a sharp version of the reverse Hölder inequality, we obtain a lower estimate for the first nontrivial eigenvalue in the case of Ahlfors type domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Astarita and G. Marrucci, Principles of Non-Newtonian Fluids Mechanics, McGraw-Hill, New York (1974).

    MATH  Google Scholar 

  2. G. Poliquin, “Principal frequency of the p-Laplacian and the inradius of Euclidean domains,” J. Topol. Anal. 7, No. 3, 505–511 (2015).

    Article  MathSciNet  Google Scholar 

  3. L. Esposito, C. Nitsch, and C. Trombetti, “Best constants in Poincaré inequalities for convex domains,” J. Convex Anal. 20, No. 1, 253–264 (2013).

    MathSciNet  MATH  Google Scholar 

  4. B. Brandolini, F. Chiacchio, E. B. Dryden, and J. J. Langford, “Sharp Poincaré inequalities in a class of non-convex sets,” J. Spectr. Theory 8, No. 4, 1583–1615 (2018).

    Article  MathSciNet  Google Scholar 

  5. V. Gol’dshtein and A. Ukhlov, “On the first eigenvalues of free vibrating membranes in conformal regular domains,” Arch. Ration. Mech. Anal. 221, No. 2, 893–915 (2016).

    Article  MathSciNet  Google Scholar 

  6. V. Gol’dshtein and L. Gurov, “Applications of change of variables operators for exact embedding theorems,” Integral Equations Oper. Theory 19, No. 1, 1–24 (1994).

    Article  MathSciNet  Google Scholar 

  7. V. Gol’dshtein and A. Ukhlov, “About homeomorphisms that induce composition operators on Sobolev spaces,” Complex Var. Elliptic Equ. 55, No. 8–10, 833–845 (2010).

    Article  MathSciNet  Google Scholar 

  8. A. Ukhlov, “On mappings, which induce embeddings of Sobolev spaces,” Sib. Math. J. 34, No. 1, 165–171 (1993).

    Article  Google Scholar 

  9. S. K. Vodop’yanov, A. D. Ukhlov, “Superposition operators in Sobolev spaces,” Russ. Math. 46, No. 10, 9–31 (2002).

    MathSciNet  MATH  Google Scholar 

  10. V. Gol’dshtein, R. Hurri-Syrjänen, V. Pchelintsev, and A. Ukhlov, “Space quasiconformal composition operators with applications to Neumann eigenvalues,” Anal. Math. Phys. 10, Article No. 78 (2020).

  11. V. Gol’dshtein, V. Pchelintsev, and A. Ukhlov, “Spectral estimates of the p-Laplace Neumann operator and Brennan’s conjecture,” Boll. Unione Mat. Ital. 11, No. 2, 245–264 (2018).

    Article  MathSciNet  Google Scholar 

  12. V. Gol’dshtein, V. Pchelintsev, and A. Ukhlov, “Integral estimates of conformal derivatives and spectral properties of the Neumann-Laplacian,” J. Math. Anal. Appl. 463, No. 1, 19–39 (2018).

    Article  MathSciNet  Google Scholar 

  13. V. Gol’dshtein, V. Pchelintsev, and A. Ukhlov, “Spectral properties of the neumann-laplace operator in quasiconformal regular domains,” Contemp. Math. 734, 129–144 (2019).

    Article  MathSciNet  Google Scholar 

  14. V. Gol’dshtein and A. Ukhlov, “Spectral estimates of the p-Laplace Neumann operator in conformal regular domains,” Trans. A. Razmadze Math. Inst. 170 No. 1, 137–148 (2016).

    Article  MathSciNet  Google Scholar 

  15. V. Gol’dshtein, V. Pchelintsev, and A. Ukhlov, “On the first eigenvalue of the degenerate p-Laplace operator in non-convex domains,” Integral Equations Oper. Theory 90, No. 4, Paper No. 43 (2018).

  16. K. Astala and P. Koskela, “Quasiconformal mappings and global integrability of the derivative,” J. Anal. Math. 57, 203–220 (1991).

    Article  MathSciNet  Google Scholar 

  17. F. W. Gehring and O. Martio, “Lipschitz classes and quasiconformal mappings,” Ann. Acad. Sci. Fenn., Ser. A I, Math. 10, 203–219 (1985).

  18. R. Hurri, “Poincaré domains in ℝn,” Ann. Acad. Sci. Fenn., Ser. A I, Math. 71, 1–42 (1988).

  19. P. Koskela, J. Onninen, and J. T. Tyson, “Quasihyperbolic boundary conditions and Poincaré domains,” Math. Ann. 323, No. 4, 811–830 (2002).

    Article  MathSciNet  Google Scholar 

  20. V. Maz’ya, Sobolev Spaces. With Applications to Elliptic Partial Differential Equations, Springer, Berlin (2011).

    MATH  Google Scholar 

  21. F. W. Gehring and K. Hag, “Reflections on reflections in quasidicks,” Report. Univ. Jyväskylä 83, 81–90 (2001).

    MATH  Google Scholar 

  22. K. Astala, “Area distortion of quasiconformal mappings,” Acta Math. 173, No. 1, 37–60 (1994).

    Article  MathSciNet  Google Scholar 

  23. V. M. Gol’dshtein, “The degree of summability of generalized derivatives of quasiconformal homeomorphisms,” Sib. Math. J. 22, No. 6, 821–836 (1981).

    Article  MathSciNet  Google Scholar 

  24. L. V. Ahlfors, Lectures on Quasiconformal Mappings, Am. Math. Soc., Providence, RI (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Pchelintsev.

Additional information

Translated from Problemy Matematicheskogo Analiza 108, 2021, pp. 139-147.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pchelintsev, V.A. On Variations of the Neumann Eigenvalues of p-Laplacian Generated by Measure Preserving Quasiconformal Mappings. J Math Sci 255, 503–512 (2021). https://doi.org/10.1007/s10958-021-05388-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-021-05388-1

Navigation