Skip to main content
Log in

Weak Error for the Euler Scheme Approximation of Degenerate Diffusions with Nonsmooth Coefficients

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We study the weak error associated with the Euler scheme of Kolmogorov like degenerate diffusion processes with nonsmooth bounded coefficients. More precisely, we consider the case of Hölder continuous homogeneous coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Bally and D. Talay, “The law of the Euler scheme for stochastic differential equations. I. Convergence rate of the distribution function,” Probab. Theory Relat. Fields, 104, No. 1, 43–60 (1996).

    Article  MathSciNet  Google Scholar 

  2. V. Bally and D. Talay, “The law of the Euler scheme for stochastic differential equations. II. Convergence rate of the density,” Monte Carlo Methods Appl., 2, No. 2, 93–128 (1996).

    Article  MathSciNet  Google Scholar 

  3. A. M. Il’in, A. S. Kalashnikov, and O. A. Oleinik, “Second-order linear equations of parabolic type,” Usp. Mat. Nauk, 17, No. 3 (105), 3–146 (1962).

  4. A. N. Kolmogorov, “Zufällige Bewegungen (zur Theorie der Brownschen Bewegung),” Ann. Math., 35, 116–117 (1934).

    Article  MathSciNet  Google Scholar 

  5. V. Konakov, A. Kozhina, and S. Menozzi, “Stability of densities for perturbed diffusions and Markov chains,” ESAIM: Probab. Statist., 21, 88–112 (2017).

    Article  MathSciNet  Google Scholar 

  6. V. Konakov and E. Mammen, “Local limit theorems for transition densities of Markov chains converging to diffusions,” Probab. Theory Relat. Fields, 117, No. 4, 551–587 (2000).

    Article  MathSciNet  Google Scholar 

  7. V. Konakov and E. Mammen, “Edgeworth type expansions for Euler schemes for stochastic differential equations,” Monte Carlo Methods Appl., 8, No. 3, 271–285 (2002).

    Article  MathSciNet  Google Scholar 

  8. V. Konakov and S. Menozzi, “Weak error for the Euler scheme approximation of diffusions with non-smooth coefficients,” Electron. J. Probab., 22, No. 46, 1–47 (2017).

    MathSciNet  MATH  Google Scholar 

  9. V. Konakov, S. Menozzi, and S. Molchanov, “Explicit parametrix and local limit theorems for some degenerate diffusion processes,” Ann. Inst. H. Poincaré Probab. Statist., 46, No. 4, 908–923 (2010).

    Article  MathSciNet  Google Scholar 

  10. A. Kozhina, “Stability of densities for perturbed degenerate diffusions,” Teor. Veroyatn. Primen., 61, No. 3, 570–579 (2016).

    Article  MathSciNet  Google Scholar 

  11. S. Kusuoka and D. Stroock, “Applications of the Malliavin calculus. I,” in: K. Itô, ed., Proc. of the Taniguchi Int. Symp. Katata and Kyoto 1982, Stoch. Analysis, Vol. 32, Kinokuniya, Tokyo (1984), pp. 271–306.

  12. S. Kusuoka and D. Stroock, “Applications of the Malliavin calculus. II,” J. Fac. Sci. Tokyo Univ. Sec. IA, 32, No. 1, 1–76 (1985).

    MathSciNet  MATH  Google Scholar 

  13. V. Lemaire and S. Menozzi, “On some nonasymptotic bounds for the Euler scheme,” Electron. J. Probab., 15, No. 53, 1645–1681 (2010).

    MathSciNet  MATH  Google Scholar 

  14. A. Lunardi, “Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in ℝn,” Ann. Scuola Norm. Super. Pisa — Classe Sci., 24, No. 1, 133–164 (1997).

    MathSciNet  MATH  Google Scholar 

  15. G. Maruyama, “Continuous Markov processes and stochastic equations,” Rend. Circ. Mat. Palermo, 4, 48 (1955).

    Article  MathSciNet  Google Scholar 

  16. S. Menozzi, “Parametrix techniques and martingale problems for some degenerate Kolmogorov equations,” Electron. Commun. Probab., 16, No. 23, 234–250 (2011).

    MathSciNet  MATH  Google Scholar 

  17. R. Mikulevičius and E. Platen, “Rate of convergence of the Euler approximation for diffusion processes,” Math. Nachr., 151, No. 1, 233–239 (1991).

    Article  MathSciNet  Google Scholar 

  18. E. Priola, “Global Schauder estimates for a class of degenerate Kolmogorov equations,” Stud. Math., 194, No. 2, 117–153 (2009).

    Article  MathSciNet  Google Scholar 

  19. I. Sonin, “A class of degenerate diffusion processes,” Teor. Veroyatn. Primen., 12, 540–547 (1967).

    MathSciNet  MATH  Google Scholar 

  20. D. Talay and L. Tubaro, “Expansion of the global error for numerical schemes solving stochastic differential equations,” Stoch. Anal. Appl., 8, 483–509 (1990).

    Article  MathSciNet  Google Scholar 

  21. M. Weber, “The fundamental solution of a degenerate partial differential equation of parabolic type,” Trans. Am. Math. Soc., 71, 24–37 (1951).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kozhina.

Additional information

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 22, No. 3, pp. 91–118, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozhina, A.A. Weak Error for the Euler Scheme Approximation of Degenerate Diffusions with Nonsmooth Coefficients. J Math Sci 254, 510–531 (2021). https://doi.org/10.1007/s10958-021-05322-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-021-05322-5

Navigation