Skip to main content
Log in

Spectral Analysis of the Airborne Vector Gravimetry Problem

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Several possible approaches for airborne vector gravimetry are compared using the spectral analysis technique. The airborne gravimetry equations are reduced to a time-invariant form using a special averaging method. Then the Fourier transform is applied to the equations. The accuracy of each approach is determined as the power spectral density of the gravity Wiener estimate error. Numerical results for the accuracy of each approach are presented given a priori stochastic models for the gravity disturbance vector and measurement errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Becker, M. Becker, A. Leinen, and Y. Zhao, “Estimability in strapdown airborne vector gravimetry,” in: Jin S., Barzaghi R., eds., Proc. of the 3rd Int. Gravity Field Service (IGFS), Shanghai, China, June 30 — July 6, 2014, IAG Symposia, Vol. 144, Springer (2015), pp. 11–15.

    Chapter  Google Scholar 

  2. Yu. V. Bolotin and A. A. Golovan, “Methods of inertial gravimetry,” Moscow Univ. Mech. Bull., No. 5, 117–125 (2013).

    Article  Google Scholar 

  3. Yu. V. Bolotin, A. A. Golovan, and N. A. Parusnikov, Equations of the Airborne Gravimetry. Algorithms and Test Results [in Russian], Appl. Stud. Center of Mech. and Math. Fac., MSU, Moscow (2002).

    Google Scholar 

  4. Yu. V. Bolotin and V. S. Vyazmin, “Gravity anomaly estimation by airborne gravimetry data using LSE and minimax optimization and spherical wavelet expansion,” Gyroscopy Navigation, 6, No. 4, 310–317 (2015).

    Article  Google Scholar 

  5. Yu. V. Bolotin and V. S. Vyazmin, “Gravity anomaly vector determination along flight trajectory and in terms of spherical wavelet coefficients using airborne gravimetry data,” in: Proc. of the 4th IAG Symp. on Terrestrial Gravimetry: Static and Mobile Measurements, CSRI Elektropribor, St. Petersburg (2016), pp. 83–86.

    Google Scholar 

  6. D. Dongkai, W. Xingshu, Z. Dejun, and H. Zongsheng, “An improved method for dynamic measurement of deflections of the vertical based on the maintenance of attitude reference,” Sensors, 14, No. 9, 16322–16342 (2014).

    Article  Google Scholar 

  7. W. Freeden and V. Michel, Multiscale Potential Theory with Applications to Geoscience, Birkhäuser (2004).

  8. R. B. R. von Frese, M. B. Jones, J. W. Kim, and J. K. Kim, “Analysis of anomaly correlations,” J. Geophysics, 62, No. 1, 342–351 (1997).

    Article  Google Scholar 

  9. A. A. Golovan and N. A. Parusnikov, Mathematical Theory of Navigation Systems, Pt. 1 [in Russian], Maks Press, Moscow (2011).

    Google Scholar 

  10. C. Jekeli, “Airborne vector gravimetry using precise, position-aided inertial measurement units,” Bull. Geodesique, 69, 1–11 (1995).

    Article  Google Scholar 

  11. C. Jekeli, “Potential theory and the static gravity field of the Earth,” Treatise on Geophys., 3, 9–35 (2015).

    Article  Google Scholar 

  12. S. K. Jordan, “Self-consistent statistical models for the gravity anomaly, vertical deflections, and undulation of the geoid,” J. Geophys. Res., 77, No. 20, 3660–3670 (1972).

    Article  Google Scholar 

  13. T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation, Prentice Hall (2000).

  14. J. H. Kwon and C. Jekeli, “A new approach for airborne vector gravimetry using GPS/INS,” J. Geodesy, 74, 690–700 (2001).

    Article  Google Scholar 

  15. J. H. Kwon and C. Jekeli, “The effect of stochastic gravity models in airborne vector gravimetry,” J. Geophys., 67, No. 3, 770–776 (2002).

    Article  Google Scholar 

  16. V. G. Peshekhonov, O. A. Stepanov, L. I. Avgustov, B. A. Blzhnov et al., Modern Methods and Instruments for Measuring of the Earth Gravitational Field [in Russian], CSRI Elektropribor, St. Petersburg (2017).

    Google Scholar 

  17. K. P. Schwartz, “What can airborne gravimetry contribute to geoid determination?” J. Geophys. Res., 101, 17873–17881 (1996).

    Article  Google Scholar 

  18. C. Shaokun, Z. Kaidong, and W. Meiping, “Improving airborne strapdown vector gravimetry using stabilized horizontal components,” J. Appl. Geophys., 98, 79–89 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Bolotin.

Additional information

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 22, No. 2, pp. 33–57, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolotin, Y.V., Vyazmin, V.S. Spectral Analysis of the Airborne Vector Gravimetry Problem. J Math Sci 253, 778–795 (2021). https://doi.org/10.1007/s10958-021-05269-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-021-05269-7

Navigation