Skip to main content
Log in

Method of Monotone Solutions for Reaction-Diffusion Equations

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Existence of solutions of reaction-diffusion systems of equations in unbounded domains is studied by the Leray–Schauder (LS) method based on the topological degree for elliptic operators in unbounded domains and on a priori estimates of solutions in weighted spaces. We identify some reaction-diffusion systems for which there exist two subclasses of solutions separated in the function space, monotone and nonmonotone solutions. A priori estimates and existence of solutions are obtained for monotone solutions allowing to prove their existence by the LS method. Various applications of this method are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Agmon, A. Douglis, and L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial diffrential equations satisfying general boundary conditions,” Commun. Pure Appl. Math., 12, 623–727 (1959).

    Article  MATH  Google Scholar 

  2. S. Agmon, A. Douglis, and L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial diffrential equations satisfying general boundary conditions II,” Commun. Pure Appl. Math., 17, 35–92 (1964).

    Article  MATH  Google Scholar 

  3. N. Apreutesei, A. Ducrot, and V. Volpert, “Competition of species with intra-specific competition,” Math. Model. Nat. Phenom., 3, No. 4, 1–27 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Apreutesei, A. Ducrot, and V. Volpert, “Travelling waves for integro-differential equations in population dynamics,” Discrete Contin. Dyn. Syst. Ser. B, 11, No. 3, 541–561 (2009).

    MathSciNet  MATH  Google Scholar 

  5. N. Apreutesei, A. Tosenberger, and V. Volpert, “Existence of reaction–diffusion waves with nonlinear boundary conditions,” Math. Model. Nat. Phenom., 8, No. 4, 2–17 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  6. N. Apreutesei and V. Volpert, “Properness and topological degree for nonlocal reaction–diffusion operators,” Abstr. Appl. Anal., 2011, ID 629692 (2011).

    Google Scholar 

  7. N. Apreutesei and V. Volpert, “Existence of travelling waves for a class of integro-differential equations from population dynamics,” Int. Electron. J. Pure Appl. Math., 5, No. 2, 53–67 (2012).

    MathSciNet  MATH  Google Scholar 

  8. N. Apreutesei and V. Volpert, “Reaction–diffusion waves with nonlinear boundary conditions,” Nonlinear Heterog. Medium, 8, No. 2, 23–35 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  9. N. Apreutesei and V. Volpert, “Travelling waves for reaction–diffusion problems with nonlinear boundary conditions. Application to a model of atherosclerosis,” Pure Appl. Funct. Anal., submitted (2017).

    Google Scholar 

  10. P. Benevieri and M. Furi, “A simple notion of orientability for Fredholm maps of index zero between Banach manifolds and degree theory,” Ann. Sci. Math. Québec, 22, 131–148 (1998).

    MathSciNet  MATH  Google Scholar 

  11. P. Benevieri and M. Furi, “On the concept of orientability for Fredholm maps between real Banach manifolds,” Topol. Methods Nonlinear Anal., 16, No. 2, 279–306 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Berestycki, B. Larrouturou, and P. L. Lions, “Multidimensional traveling wave solutions of a flame propagation model,” Arch. Ration. Mech. Anal., 111, 97–117 (1990).

    Article  MATH  Google Scholar 

  13. H. Berestycki and L. Nirenberg, “Travelling fronts in cylinders,” Ann. Inst. H. Poincaré Anal. Non Linéaire, 9, No. 5, 497–572 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  14. N. Bessonov, N. Reinberg, and V. Volpert, “Mathematics of Darwin’s diagram,” Math. Model. Nat. Phenom., 9, No. 3, 5–25 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  15. G. Bocharov, A. Meyerhans, N. Bessonov, S. Trofimchuk, and V. Volpert, “Spatiotemporal dynamics of virus infection spreading in tissues,” PLoS ONE, 11 (12), e0168576 (2016); https://doi.org/10.1371/journal.pone.0168576

  16. Yu. G. Borisovich, V. G. Zvyagin, and Yu. I. Sapronov, “Nonlinear Fredholm mappings and the Leray–Schauder theory,” Usp. Mat. Nauk, 32, No. 4, 3–54 (1977).

    MathSciNet  MATH  Google Scholar 

  17. J. F. Collet and V. Volpert, “Computation of the index of linear elliptic operators in unbounded cylinders,” J. Funct. Anal., 164, 34–59 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  18. E. N. Dancer, “Boundary value problems for ordinary differential equations on infinite intervals,” Proc. Lond. Math. Soc., 30, No. 3, 76–94 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  19. I. Demin and V. Volpert, “Existence of waves for a nonlocal reaction–diffusion equation,” Math. Model. Nat. Phenom., 5, No. 5, 80–101 (2010).

  20. K. D. Elworthy and A. J. Tromba, “Degree theory on Banach manifolds,” In: Nonlinear Functional Analysis, Amer. Math. Soc., Providence (1970), pp. 86–94.

    Book  Google Scholar 

  21. K. D. Elworthy and A. J. Tromba, “Differential structures and Fredholm maps on Banach manifolds,” In: Global Analysis, Amer. Math. Soc., Providence (1970), pp. 45–94.

    Google Scholar 

  22. N. Eymard, V. Volpert, and V. Vougalter, “Existence of pulses for local and nonlocal reaction–diffusion equations,” J. Dynam. Differ. Equ., 29, No. 3, 1145–1158 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  23. C. Fenske, “Analytische Theorie des Abbildunggrades fur Abbildungen in Banachraumen,” Math. Nachr., 48, 279–290 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  24. P. C. Fife and J. B. McLeod, “The approach to solutions of nonlinear diffusion equations to traveling front solutions,” Arch. Ration. Mech. Anal., 65, 335–361 (1977).

    Article  MATH  Google Scholar 

  25. P. C. Fife and J. B. McLeod, “A phase plane discussion of convergence to travelling fronts for nonlinear diffusion,” Arch. Ration. Mech. Anal., 75, 281–314 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  26. P. M. Fitzpatrick, “The parity as an invariant for detecting bifurcaton of the zeroes of one parameter families of nonlinear Fredholm maps,” Lecture Notes in Math., 1537, 1–31 (1993).

    Article  MATH  Google Scholar 

  27. P. M. Fitzpatrick and J. Pejsachowicz, “Parity and generalized multiplicity,” Trans. Am. Math. Soc., 326, 281–305 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  28. P. M. Fitzpatrick and J. Pejsachowicz, “Orientation and the Leray–Schauder degree for fully nonlinear elliptic boundary value problems,” Mem. Am. Math. Soc., 101, No. 483, 1–131 (1993).

    MATH  Google Scholar 

  29. P. M. Fitzpatrick, J. Pejsachowicz, and P. J. Rabier, “The degree of proper C2 Fredholm mappings,” J. Reine Angew. Math., 427, 1–33 (1992).

    MathSciNet  MATH  Google Scholar 

  30. P. M. Fitzpatrick, J. Pejsachowicz, and P. J. Rabier, “Orientability of Fredholm families and topological degree for orientable nonlinear Fredholm mappings,” J. Funct. Anal., 124, 1–39 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  31. T. Galochkina, M. Marion, and V. Volpert, “Initiation of reaction–diffusion waves of blood coagulation,” to be published.

  32. R. A. Gardner, “Existence and stability of traveling wave solution of competition models: a degree theoretic approach,” J. Differ. Equ., 44, 343–364 (1982).

    Article  MATH  Google Scholar 

  33. C. A. Isnard, “Orientation and degree in infinite dimensions,” Not. Am. Math. Soc., 19, A-514 (1972).

    Google Scholar 

  34. J. Leray and J. Schauder, “Topologie et équations fonctionnelles,” Ann. Sci. Éc. Norm. Supér (3), 51, 45–78 (1934).

  35. M. Marion and V. Volpert, “Existence of pulses for a monotone reaction–diffusion system,” Pure Appl. Funct. Anal., 1, No. 1, 97–122 (2016).

  36. M. Marion and V. Volpert, “Existence of pulses for the system of competition of species,” J. Dyn. Differ. Equ., to be published.

  37. C. Miranda, Equazioni alle Derivate Parziale di Tipo Elliptico, Springer-Verlag, Berlin (1955).

    MATH  Google Scholar 

  38. A. Muravnik, “On the half-plane Dirichlet problem for differential-difference elliptic equations with several nonlocal terms,” Math. Model. Nat. Phenom., 12, No. 6, 130–143 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  39. G. G. Onanov and A. L. Skubachevskii, “Nonlocal problems in the mechanics of three-layer shells,” Math. Model. Nat. Phenom., 12, No. 6, 192–207 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  40. P. J. Rabier and C. A. Stuart, “Fredholm and properness properties of quasilinear elliptic operators on RN,” Math. Nachr., 231, 29–168 (2001).

    Article  Google Scholar 

  41. V. S. Rabinovich, “Pseudodifferential operators in unbounded domains, with conical structure at infinity,” Mat. Sb., 80, 77–96 (1969).

  42. V. S. Rabinovich, “Fredholm property of general boundary-value problems on noncompact manifolds and limiting operators,” Dokl. RAN, 325, No. 2, 237–241 (1992).

    Google Scholar 

  43. V. Rabinovich, S. Roch, and B. Silbermann, “Limit operators and their applications in operator theory,” Oper. Theory Adv. Appl., 150, 1–392 (2004).

    MathSciNet  MATH  Google Scholar 

  44. L. Rossovskii, “Elliptic functional differential equations with incommensurable contractions,” Math. Model. Nat. Phenom., 12, No. 6, 226–239 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  45. A. L. Skubachevskii, “Nonlocal elliptic problems and multidimensional diffusion processes,” Russ. J. Math. Phys., 3, No. 3, 327–360 (1995).

  46. A. L. Skubachevskii, Elliptic Functional Differential Equations and Applications, Birkh¨auser, Basel (1997).

    Google Scholar 

  47. S. Smale, “An infinite dimensional version of Sard’s theorem,” Am. J. Math., 87, 861–866 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  48. A. Tasevich, “Analysis of functional-differential equation with orthotropic contractions,” Math. Model. Nat. Phenom., 12, No. 6, 240–248 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  49. S. Trofimchuk and V. Volpert, “Travelling waves for a bistable reaction–diffusion equation with delay,” Arxiv, 1701.08560v1 (2017).

  50. M. I. Vishik, “On strongly elliptic systems of differential equations,” Mat. Sb., 29, 615–676 (1951).

    MathSciNet  MATH  Google Scholar 

  51. L. R. Volevich, “Solvability of boundary-value problems for general elliptic systems,” Mat. Sb., 68, 373–416 (1965).

    MathSciNet  Google Scholar 

  52. A. I. Volpert and V. A. Volpert, “Application of the theory of rotation of vector fields to investigation of wave solutions of parabolic equations,” Tr. Mosk. Mat. Ob-va, 52, 58–109 (1989).

    Google Scholar 

  53. A. Volpert and V. Volpert, “The construction of the Leray–Schauder degree for elliptic operators in unbounded domains,” Ann. Inst. H. Poincaré Anal. Non Linéaire, 11, No. 3, 245–273 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  54. A. Volpert and V. Volpert, “Existence of multidimensional travelling waves and systems of waves,” Commun. Part. Differ. Equ., 26, No. 3-4, 76–85 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  55. A. Volpert and V. Volpert, “Properness and topological degree for general elliptic operators,” Abstr. Appl. Anal., No. 3, 129–181 (2003).

  56. A. Volpert and V. Volpert, “Formally adjoint problems and solvability conditions for elliptic operators,” Russ. J. Math. Phys., 11, No. 4, 474–497 (2004).

    MathSciNet  MATH  Google Scholar 

  57. A. Volpert and V. Volpert, “Fredholm property of elliptic operators in unbounded domains,” Trans. Moscow Math. Soc., 67, 127–197 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  58. A. Volpert, Vit. Volpert, and Vl. Volpert, Traveling Wave Solutions of Parabolic Systems, Amer. Math. Soc., Providence (1994).

  59. V. Volpert, “Asymptotic behavior of solutions of a nonlinear diffusion equation with a source term of general form,” Sib. Math. J., 30, No. 1, 25–36 (1989).

    Article  Google Scholar 

  60. V. Volpert, “Convergence to a wave of solutions of a nonlinear diffusion equation with source of general type,” Sib. Math. J., 30, No. 2, 203–210 (1989).

    Article  Google Scholar 

  61. V. Volpert, Elliptic Partial Differential Equations. Vol. 1. Fredholm Theory of Elliptic Problems in Unbounded Domains, Birkhäuser, Basel (2011).

    Book  Google Scholar 

  62. V. Volpert, Elliptic Partial Differential Equations. Vol. 2. Reaction–Diffusion Equations, Birkhäuser, Basel (2014).

    Book  MATH  Google Scholar 

  63. V. Volpert, “Pulses and waves for a bistable nonlocal reaction–diffusion equation,” Appl. Math. Lett., 44, 21–25 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  64. V. Volpert, N. Reinberg, M. Benmir, and S. Boujena, “On pulse solutions of a reaction–diffusion system in population dynamics,” Nonlinear Anal., 120, 76–85 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  65. V. Volpert, A. Volpert, and J. F. Collet, “Topological degree for elliptic operators in unbounded cylinders,” Adv. Differ. Equ., 4, No. 6, 777–812 (1999).

    MathSciNet  MATH  Google Scholar 

  66. V. Vougalter and V. Volpert, “Solvability relations for some non-Fredholm operators,” Int. Electron. J. Pure Appl. Math., 2, No. 1, 75–83 (2010).

    MATH  Google Scholar 

  67. V. Vougalter and V. Volpert, “Solvability conditions for some non-Fredholm operators,” Proc. Edinburgh Math. Soc. (2), 54, No. 1, 249–271 (2011).

  68. V. Vougalter and V. Volpert, “On the existence of stationary solutions for some non Fredholm integro-differential equations,” Doc. Math., 16, 561–580 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  69. V. Vougalter and V. Volpert, “Existence of stationary pulses for nonlocal reaction–diffusion equations,” Doc. Math., 19, 1141–1153 (2014).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Volpert.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 63, No. 3, Differential and Functional Differential Equations, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volpert, V., Vougalter, V. Method of Monotone Solutions for Reaction-Diffusion Equations. J Math Sci 253, 660–675 (2021). https://doi.org/10.1007/s10958-021-05260-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-021-05260-2

Navigation