Skip to main content
Log in

Approximation of the Lebesgue Constant of a Lagrange Polynomial by a Logarithmic Function with Shifted Argument

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Well-known two-sided estimates for the Lebesgue constants of two classical trigonometric interpolation Lagrange polynomials are improved. Approximations of these Lebesgue constants are based on logarithmic functions with shifted arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. I. Babenko, Foundations of Numerical Analysis, Moscow–Izhevsk (2002).

  2. D. L. Berman, “On the question of the best system of nodes of parabolic interpolation,” Izv. Vyssh. Ucheb. Zaved. Mat., 4 (35), 20–25 (1963).

    Google Scholar 

  3. L. Brutman, “Lebesgue functions for polynomial interpolation. A survey,” Ann. Numer. Math., 4, 111–127 (1997).

    MathSciNet  MATH  Google Scholar 

  4. B. G. Gabdulkhaev, Optimal Approximations of Solutions of Linear Problems [in Russian], Izd. Kazan Univ., Kazan (1980).

    Google Scholar 

  5. V. L. Goncharov, Theory of Interpolation and Approximation of Functions [in Russian], GTTI, Moscow–Leningrad (1934).

    Google Scholar 

  6. R. Gunttner, “Evaluation of Lebesgue constants,” SIAM J. Numer. Anal., 17, No. 4, 512–520 (1980).

    Article  MathSciNet  Google Scholar 

  7. V. V. Ivanov, Theory of Approximate Methods and Its Application to the Numerical Solution of Singular Integral Equations, Naukova Dumka, Kiev (1968).

    Google Scholar 

  8. N. P. Korneichuk, Extremal Problems of Approximation Theory, Nauka, Moscow (1976).

    Google Scholar 

  9. I. P. Natanson, Constructive Theory of Functions, Gostekhizdat, Moscow–Leningrad (1949).

    Google Scholar 

  10. T. Rivlin, “The Lebesgue constants for polynomial interpolation,” in: Functional Analysis and Its Applications (H. C. Garnier et al., eds.), Springer-Verlag, Berlin (1974), pp. 422–437.

  11. I. A. Shakirov, “On the influence of the choice of nodes of Lagrangian interpolation on exact and approximate values of Lebesgue constants,” Sib. Mat. Zh., 55, No. 6, 1404–1423 (2014).

    Article  MathSciNet  Google Scholar 

  12. I. A. Shakirov, “On the limit value of the remainder term of the Lebesgue constant corresponding to the trigonometric Lagrange polynomial,” Izv. Saratov. Univ. Nov. Ser. Ser. Mat. Mekh. Inform., 16, No. 3, 302–310 (2016).

    Article  Google Scholar 

  13. I. A. Shakirov and I. O. Prikhodov, “On the Lebesgue constant of the Lagrange polynomial,” in: Actual Directions of Scientific Research in the 19th Century: Theory and Practice, Proc. Conf. November 9–12, 2015, 8, Voronezh (2015), pp. 448–452.

  14. P. Vertesi, “Optimal Lebesgue constants for Lagrange interpolation,” SIAM J. Numer. Anal., 27, 1322–1331 (1990).

    Article  MathSciNet  Google Scholar 

  15. A. Zygmund, Trigonometric Series, Vol. 2, Cambridge University Press, Cambridge (1965).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Shakirov.

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 153, Complex Analysis, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakirov, I.A. Approximation of the Lebesgue Constant of a Lagrange Polynomial by a Logarithmic Function with Shifted Argument. J Math Sci 252, 445–452 (2021). https://doi.org/10.1007/s10958-020-05172-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-020-05172-7

Keywords and phrases

AMS Subject Classification

Navigation