On a Certain Class of Hyperbolic Equations with Second-Order Integrals

Abstract

In this paper, we examine a special class of nonlinear hyperbolic equations possessing a second-order y-integral. We clarify the structure of x-integrals and prove that they are x-integrals of a hyperbolic equation with a first-order y-integral. We also prove that this class contains the well-known Laine equation.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    O. V. Kaptsov, Methods of Integrating Partial Differential Equations [in Russian], Fizmatlit, Moscow (2009).

  2. 2.

    O. V. Kaptsov, “On the problem of Goursats classification,” Programmirovanie, 2, 68–71 (2012).

    Google Scholar 

  3. 3.

    M. E. Laine, “Sur l’application de la methode de Darboux aux equations s = f(x, y, z, p, q),” C. R. Acad. Sci. Paris, 182, 1126–1127 (1926).

  4. 4.

    A. V. Zhiber and V. V. Sokolov, “Exactly integrable hyperbolic equations of Liouville type,” Usp. Mat. Nauk, 56, No. 1 (337), 63–106 (2001).

  5. 5.

    A. V. Zhiber and A. M. Yurieva, “Hyperbolic Liouville type equations of a special class,” Itogi Nauki Tekh. Sovr. Mat. Prilozh. Temat. Obzory, 137, 17–25 (2017).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. V. Zhiber.

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 152, Mathematical Physics, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhiber, A.V., Yur’eva, A.M. On a Certain Class of Hyperbolic Equations with Second-Order Integrals. J Math Sci 252, 168–174 (2021). https://doi.org/10.1007/s10958-020-05151-y

Download citation

Keywords and phrases

  • Liouville-type equations
  • differential substitutions
  • x- and y-integrals

AMS Subject Classification

  • 35Q51
  • 37K60