Existence of Weak Solutions of the Aggregation Equation with the p(·)-Laplacian


We consider an elliptic-parabolic aggregation equation of the form

$$ b{(u)}_t=\operatorname{div}\left({\left|\nabla u\right|}^{p(x)-2}\nabla u-b(u)G(u)\right)+\gamma \left(x,b(u)\right), $$

where b is a nondecreasing function and G(u) is an integral operator. The condition on the boundary of a bounded domain Ω ensures that the mass of the population ∫u(x, t)dx = const is preserved for γ = 0. We prove the existence of a weak solution of the problem with a nonnegative bounded initial function in the cylinder Ω × (0, T). A formula for the guaranteed time T of the existence of the solution is obtained.

This is a preview of subscription content, log in to check access.


  1. 1.

    Yu. A. Alkhutov and V. V. Zhikov, “Existence and uniqueness theorems for solutions of parabolic equations with a variable nonlinearity order,” Mat. Sb., 205, No. 3, 3–14 (2014).

    MathSciNet  Article  Google Scholar 

  2. 2.

    H. W. Alt and S. Luckhaus, “Quasilinear elliptic-parabolic differential equations,” Math. Z., 183, 311-341 (1983).

    MathSciNet  Article  Google Scholar 

  3. 3.

    A. O. Belyakov and A. A. Davydov, “Optimization of the efficiency of cyclic use of a renewable resource,” Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 22, No. 2, 38–46 (2016).

    Google Scholar 

  4. 4.

    A. Bertozzi and D. Slepcev, “Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion,” Commun. Pure Appl. Anal., 9, No. 6, 1617–1637 (2010).

    MathSciNet  Article  Google Scholar 

  5. 5.

    A. Blanchet, J. A. Carrillo, and P. Laurencot, “Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions,” Calc. Var., 35, 133–168 (2009).

    MathSciNet  Article  Google Scholar 

  6. 6.

    S. Boi, V. Capasso, and D. Morale, “Modeling the aggregative behavior of ants of the species polyergus rufescens,” Nonlin. Anal. Real World Appl., 1, 163-176 (2000).

    MathSciNet  Article  Google Scholar 

  7. 7.

    M. Burger, R. C. Fetecau, and Y. Huang, “Stationary states and asymptotic behaviour of aggregation models with nonlinear local repulsion,” SIAM J. Appl. Dynam. Syst., 13, No. 1, 397–424 (2014).

    Article  Google Scholar 

  8. 8.

    J. A. Carrillo, S. Hittmeir, B. Volzone, and Y. Yao, Nonlinear aggregation-diffusion equations: radial symmetry and long time asymptotics, e-print arxiv:1603.07767v1[math.ap].

  9. 9.

    R. Eftimie, G. Vries, M. A. Lewis, and F. Lutscher, “Modeling group formation and activity patterns in self-organizing collectives of individuals,” Bull. Math. Biol., 146, No. 69, 1537-1565 (2007).

  10. 10.

    J.-L. Lions and E. Magenes, Problèmes aux Limites Non Homogènes et Applications, Dunod, Paris (1968).

    Google Scholar 

  11. 11.

    P. A. Milewski and X. Yang, “A simple model for biological aggregation with asymmetric sensing,” Commun. Math. Sci., 6, 397-416 (2008).

    MathSciNet  Article  Google Scholar 

  12. 12.

    D. Morale, V. Capasso, K. Oelschlager, “An interacting particle system modelling aggregation behavior: from individuals to populations,” J. Math. Biol., 50, 49–66 (2005).

    MathSciNet  Article  Google Scholar 

  13. 13.

    F. X. Mukminov, “Uniqueness of the renormalized solution of an elliptic-parabolic problem in anisotropic Sobolev–Orlicz spaces,” Mat. Sb., 208, No. 8, 106–125 (2017).

    Article  Google Scholar 

  14. 14.

    F. Otto, “L1-Contraction and uniqueness for quasilinear elliptic-parabolic equations,” J. Differ. Equ., 131, 20–38 (1996).

    MathSciNet  Article  Google Scholar 

  15. 15.

    C. M. Topaz and A. L. Bertozzi, “Swarming patterns in a two-dimensional kinematic model for biological groups,” SIAM J. Appl. Math., 65, 152–174 (2004).

    MathSciNet  Article  Google Scholar 

  16. 16.

    C. M. Topaz, A. L. Bertozzi, and M. A. Lewis, “A nonlocal continuum model for biological aggregation,” Bull. Math. Biol., 68, 1601-1623 (2006).

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to V. F. Vildanova.

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 152, Mathematical Physics, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vildanova, V.F., Mukminov, F.K. Existence of Weak Solutions of the Aggregation Equation with the p(·)-Laplacian. J Math Sci 252, 156–167 (2021). https://doi.org/10.1007/s10958-020-05150-z

Download citation

Keywords and phrases

  • aggregation equation
  • p(·)-Laplacian
  • existence of solution

AMS Subject Classification

  • 35K20
  • 35K55
  • 35K65