Skip to main content

Asymmetry of Locally Available and Locally Transmitted Information in Thermal Two-Qubit States

Abstract

In the paper, we consider thermal states of two particles with spin 1/2 (qubits) located in an inhomogeneous transverse magnetic field and interacting according to the Heisenberg XY -model. We introduce the concepts of magnitude and direction of asymmetry of the entropy of a state and the magnitude and asymmetry of a flow of locally transmitted information. We show that for the system considered, the asymmetry of entropy is directed from the particle in a weaker magnetic field toward the particle in a stronger magnetic field, and this direction coincides with the direction of the excess flow of locally transmitted information. We also demonstrate that this asymmetry direction is consistent with the direction of the excess flow of locally available information: measurements over the particle in a weaker magnetic field provide a greater level of locally available information than measurements over the particle in a stronger magnetic field.

References

  1. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett., 70, 1895 (1993).

    MathSciNet  Article  Google Scholar 

  2. Bennet H. and Wiesner S. J., “Communication via one- and two-particle operators on Einstein– Podolsky–Rosen states,” Phys. Rev. Lett., 69, 2881 (1992).

    MathSciNet  Article  Google Scholar 

  3. N. J. Cerf and C. Adami, “Negative entropy and information in quantum mechanics,” Phys. Rev. Lett., 79, 5194–5197 (1997).

    MathSciNet  Article  Google Scholar 

  4. N. J. Cerf and C. Adami, “Quantum extension of conditional probability,” Phys. Rev. A, 60, 893–897 (1999).

    MathSciNet  Article  Google Scholar 

  5. F. F. Fanchini, L. K. Castelano, M. F. Cornelio, and M. C. de Oliveira, “Locally inaccessible information as a fundamental ingredient to quantum information,” New J. Phys., 14, 013027 (2012).

    Article  Google Scholar 

  6. Fedorov A. K., Kiktenko E. O., Man’ko O. V., and Man’ko V. I., “Tomographic discord for a system of two coupled nanoelectric circuits,” Phys. Scr., 90, 055101 (2015).

    Article  Google Scholar 

  7. E. B. Fel’dman and A. I. Zenchuk, “Asymmetry of bipartite quantum discord,” JETP Lett., 93, 459–462 (2011).

    Article  Google Scholar 

  8. L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A, 34, 6899 (2001).

    MathSciNet  Article  Google Scholar 

  9. A. S. Holevo, Quantum Systems, Channels, Information: A Mathematical Introduction, deGruyter (2012).

  10. K. Horodecki, M. Horodecki, and P. Horodecki, “Are quantum correlations symmetric?,” Quantum Inf. Comput., 10, 901–910 (2010).

    MathSciNet  MATH  Google Scholar 

  11. M. Horodecki, J. Oppenheim, and A. Winter, “Partial quantum information,” Nature, 436, 673– 676 (2005).

    Article  Google Scholar 

  12. M. Horodecki, J. Oppenheim, and A. Winter, “Quantum state merging and negative information,” Commun. Math. Phys., 269, 107–136 (2007).

    MathSciNet  Article  Google Scholar 

  13. R. Horodecki and P. Horodecki, “Quantum redundancies and local realism,” Phys. Lett. A, 194, 147–152 (1994).

    MathSciNet  Article  Google Scholar 

  14. A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett., 83, 4204–4207 (1999).

    Article  Google Scholar 

  15. E. O. Kiktenko and A. K. Fedorov, “Tomographic causal analysis of two-qubit states and tomographic discord,” Phys. Lett. A, 378, 1704 (2014).

    MathSciNet  Article  Google Scholar 

  16. S. M. Korotaev, “On the possibility of causal analysis of geophysical processes,” Geomagn. Aeronom., 32, No. 1, 27–33 (1992).

    Google Scholar 

  17. E. O. Kiktenko and S. M. Korotaev, “Causal analysis of asymmetric entangled states under decoherence,” Phys. Lett. A, 376, 820 (2012).

    MathSciNet  Article  Google Scholar 

  18. S. M. Korotaev and E. O. Kiktenko, “Causal analysis of the quantum states,” AIP Conf. Proc., 1316, 295–331 (2010).

    Article  Google Scholar 

  19. S. M. Korotaev and E. O. Kiktenko, “Causality and decoherence in the asymmetric states,” Phys. Scr., 85, 055006 (2012).

    Article  Google Scholar 

  20. A. Maldonado-Trapp, A. Hu, and L. Roa, “Analytical solutions and criteria for the quantum discord of two-qubit X-states,” Quantum Inf. Process., 14, 1947–1958 (2015).

    Article  Google Scholar 

  21. H. Ollivier and W. H. Zurek, “Quantum discord: A measure of the quantumness of correlations,” Phys. Rev. Lett., 88, 017901 (2001).

    Article  Google Scholar 

  22. J. Siewert, R. Fazio, G. M. Palma, and E. Sciacca, “Aspects of qubit dynamics in the presence of leakage,” J. Low Temp. Phys., 118, 795–804 (2000).

    Article  Google Scholar 

  23. X. Su, W. Wang, Y. Wang, X. Jia, C. Xie, and K. Peng, “Continuous variable quantum key distribution based on optical entangled states without signal modulation,” Eur. Phys. Lett., 87, 2005 (2009).

    Article  Google Scholar 

  24. Y. Sun, Yu. Chen, and H. Chen, “Thermal entanglement in the two-qubit Heisenberg XY model under a nonuniform external magnetic field,” Phys. Rev. A., 68, 044301 (2003).

    Article  Google Scholar 

  25. W. K. Wotters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett., 80, 2245 (1998).

    Article  Google Scholar 

  26. W. K. Wotters and W. H. Zurek, “A single quantum cannot be cloned,” Nature, 299, 802–803 (1982).

    Article  Google Scholar 

  27. Y. Ye, L. Tongqi, L. Yu-En, and Y. Qi-Zhong, “Quantum teleportation via a two-qubit Heisenberg XY chain: effects of anisotropy and magnetic field,” J. Phys. A, 38, 3235 (2005).

    MathSciNet  Article  Google Scholar 

  28. T. Yu and J. H. Eberly, “Evolution from entanglement to decoherence of bipartite mixed Xstates,” Quantum Inf. Comput., 7, 459–468 (2007).

    MathSciNet  MATH  Google Scholar 

  29. Zhang J., Long G. L., Zhang W., Deng Z., Liu W., and Lu Z., “Simulation of Heisenberg XY interactions and realization of a perfect state transfer in spin chains using liquid nuclear magnetic resonance,” Phys. Rev. A, 72, 012331 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Kiktenko.

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 151, Quantum Probability, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kiktenko, E.O. Asymmetry of Locally Available and Locally Transmitted Information in Thermal Two-Qubit States. J Math Sci 252, 43–59 (2021). https://doi.org/10.1007/s10958-020-05140-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-020-05140-1

Keywords and phrases

  • quantum discord
  • Heisenberg XY -interaction
  • locally available information

AMS Subject Classification

  • 81V99
  • 81Q99