C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett., 70, 1895 (1993).
MathSciNet
Article
Google Scholar
Bennet H. and Wiesner S. J., “Communication via one- and two-particle operators on Einstein– Podolsky–Rosen states,” Phys. Rev. Lett., 69, 2881 (1992).
MathSciNet
Article
Google Scholar
N. J. Cerf and C. Adami, “Negative entropy and information in quantum mechanics,” Phys. Rev. Lett., 79, 5194–5197 (1997).
MathSciNet
Article
Google Scholar
N. J. Cerf and C. Adami, “Quantum extension of conditional probability,” Phys. Rev. A, 60, 893–897 (1999).
MathSciNet
Article
Google Scholar
F. F. Fanchini, L. K. Castelano, M. F. Cornelio, and M. C. de Oliveira, “Locally inaccessible information as a fundamental ingredient to quantum information,” New J. Phys., 14, 013027 (2012).
Article
Google Scholar
Fedorov A. K., Kiktenko E. O., Man’ko O. V., and Man’ko V. I., “Tomographic discord for a system of two coupled nanoelectric circuits,” Phys. Scr., 90, 055101 (2015).
Article
Google Scholar
E. B. Fel’dman and A. I. Zenchuk, “Asymmetry of bipartite quantum discord,” JETP Lett., 93, 459–462 (2011).
Article
Google Scholar
L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A, 34, 6899 (2001).
MathSciNet
Article
Google Scholar
A. S. Holevo, Quantum Systems, Channels, Information: A Mathematical Introduction, deGruyter (2012).
K. Horodecki, M. Horodecki, and P. Horodecki, “Are quantum correlations symmetric?,” Quantum Inf. Comput., 10, 901–910 (2010).
MathSciNet
MATH
Google Scholar
M. Horodecki, J. Oppenheim, and A. Winter, “Partial quantum information,” Nature, 436, 673– 676 (2005).
Article
Google Scholar
M. Horodecki, J. Oppenheim, and A. Winter, “Quantum state merging and negative information,” Commun. Math. Phys., 269, 107–136 (2007).
MathSciNet
Article
Google Scholar
R. Horodecki and P. Horodecki, “Quantum redundancies and local realism,” Phys. Lett. A, 194, 147–152 (1994).
MathSciNet
Article
Google Scholar
A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett., 83, 4204–4207 (1999).
Article
Google Scholar
E. O. Kiktenko and A. K. Fedorov, “Tomographic causal analysis of two-qubit states and tomographic discord,” Phys. Lett. A, 378, 1704 (2014).
MathSciNet
Article
Google Scholar
S. M. Korotaev, “On the possibility of causal analysis of geophysical processes,” Geomagn. Aeronom., 32, No. 1, 27–33 (1992).
Google Scholar
E. O. Kiktenko and S. M. Korotaev, “Causal analysis of asymmetric entangled states under decoherence,” Phys. Lett. A, 376, 820 (2012).
MathSciNet
Article
Google Scholar
S. M. Korotaev and E. O. Kiktenko, “Causal analysis of the quantum states,” AIP Conf. Proc., 1316, 295–331 (2010).
Article
Google Scholar
S. M. Korotaev and E. O. Kiktenko, “Causality and decoherence in the asymmetric states,” Phys. Scr., 85, 055006 (2012).
Article
Google Scholar
A. Maldonado-Trapp, A. Hu, and L. Roa, “Analytical solutions and criteria for the quantum discord of two-qubit X-states,” Quantum Inf. Process., 14, 1947–1958 (2015).
Article
Google Scholar
H. Ollivier and W. H. Zurek, “Quantum discord: A measure of the quantumness of correlations,” Phys. Rev. Lett., 88, 017901 (2001).
Article
Google Scholar
J. Siewert, R. Fazio, G. M. Palma, and E. Sciacca, “Aspects of qubit dynamics in the presence of leakage,” J. Low Temp. Phys., 118, 795–804 (2000).
Article
Google Scholar
X. Su, W. Wang, Y. Wang, X. Jia, C. Xie, and K. Peng, “Continuous variable quantum key distribution based on optical entangled states without signal modulation,” Eur. Phys. Lett., 87, 2005 (2009).
Article
Google Scholar
Y. Sun, Yu. Chen, and H. Chen, “Thermal entanglement in the two-qubit Heisenberg XY model under a nonuniform external magnetic field,” Phys. Rev. A., 68, 044301 (2003).
Article
Google Scholar
W. K. Wotters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett., 80, 2245 (1998).
Article
Google Scholar
W. K. Wotters and W. H. Zurek, “A single quantum cannot be cloned,” Nature, 299, 802–803 (1982).
Article
Google Scholar
Y. Ye, L. Tongqi, L. Yu-En, and Y. Qi-Zhong, “Quantum teleportation via a two-qubit Heisenberg XY chain: effects of anisotropy and magnetic field,” J. Phys. A, 38, 3235 (2005).
MathSciNet
Article
Google Scholar
T. Yu and J. H. Eberly, “Evolution from entanglement to decoherence of bipartite mixed Xstates,” Quantum Inf. Comput., 7, 459–468 (2007).
MathSciNet
MATH
Google Scholar
Zhang J., Long G. L., Zhang W., Deng Z., Liu W., and Lu Z., “Simulation of Heisenberg XY interactions and realization of a perfect state transfer in spin chains using liquid nuclear magnetic resonance,” Phys. Rev. A, 72, 012331 (2005).
Article
Google Scholar