Skip to main content
Log in

Commutators of Relative and Unrelative Elementary Groups, Revisited

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Let R be any associative ring with 1, let n ≥ 3, and let A,B be two-sided ideals of R. In the present paper, we show that the mixed commutator subgroup [E(n,R,A),E(n,R,B)] is generated as a group by the elements of the two following forms: 1) zij(ab, c) and zij (ba, c), 2) [tij(a), tji(b)], where 1 ≤ i ≠ j ≤ n, a ∈ A, b ∈ B, c ∈ R. Moreover, for the second type of generators, it suffices to fix one pair of indices (i, j). This result is both stronger and more general than the previous results by Roozbeh Hazrat and the authors. In particular, it implies that for all associative rings one has the equality [E(n,R,A),E(n,R,B)] = [E(n,A),E(n,B)], and many further corollaries can be derived for rings subject to commutativity conditions. Bibliography: 36 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bak, “Non-abelian K-theory: The nilpotent class of K1 and general stability,” K– Theory, 4, 363–397 (1991).

    MathSciNet  MATH  Google Scholar 

  2. H. Bass, “K-theory and stable algebra,” Inst. Hautes Études Sci. Publ. Math., No. 22, 5–60 (1964).

    MathSciNet  MATH  Google Scholar 

  3. Z. I. Borewicz and N. A. Vavilov, “The distribution of subgroups in the full linear group over a commutative ring,” Proc. Steklov Inst. Math., 3, 27–46 (1985).

    Google Scholar 

  4. D. Carter and G. E. Keller, “Bounded elementary generation of SLn(O),” Amer. J. Math., 105, 673–687 (1983).

    MathSciNet  MATH  Google Scholar 

  5. V. N. Gerasimov, “The group of units of a free product of rings,” Math. USSR Sb., 134, No. 1, 42–65 (1989).

    MathSciNet  MATH  Google Scholar 

  6. A. J. Hahn and O. T. O’Meara, The Classical Groups and K-Theory, Springer, Berlin (1989).

    MATH  Google Scholar 

  7. R. Hazrat, A. Stepanov, N. Vavilov, and Z. Zhang, “The yoga of commutators,” J. Math. Sci., 179, No. 6, 662–678 (2011).

    MathSciNet  MATH  Google Scholar 

  8. R. Hazrat, A. Stepanov, N. Vavilov, and Z. Zhang, “Commutator width in Chevalley groups,” Note Mat., 33, No. 1, 139–170 (2013).

    MathSciNet  MATH  Google Scholar 

  9. R. Hazrat, A. Stepanov, N. Vavilov, and Z. Zhang, “The yoga of commutators, further applications,” J. Math. Sci., 200, No. 6, 742–768 (2014).

    MathSciNet  MATH  Google Scholar 

  10. R. Hazrat and N. Vavilov, “Bak’s work on K-theory of rings (with an appendix by Max Karoubi),” J. K-Theory, 4, No. 1, 1–65 (2009).

    MathSciNet  MATH  Google Scholar 

  11. R. Hazrat, N. Vavilov, and Z. Zhang, “Generation of relative commutator subgroups in Chevalley groups,” Proc. Edinb. Math. Soc., 59, 393–410 (2016).

    MathSciNet  MATH  Google Scholar 

  12. R. Hazrat, N. Vavilov, and Z. Zhang, “Multiple commutator formulas for unitary groups,” Israel J. Math., 219, 287–330 (2017).

    MathSciNet  MATH  Google Scholar 

  13. R. Hazrat, N. Vavilov, and Z. Zhang, “The commutators of classical groups,” J. Math. Sci., 222, No. 4, 466–515 (2017).

    MathSciNet  MATH  Google Scholar 

  14. R. Hazrat and Z. Zhang, “Generalized commutator formula,” Comm. Algebra, 39, No. 4, 1441–1454 (2011).

    MathSciNet  MATH  Google Scholar 

  15. R. Hazrat and Z. Zhang, “Multiple commutator formula,” Israel J. Math., 195, 481–505 (2013).

    MathSciNet  MATH  Google Scholar 

  16. W. van der Kallen, “A group structure on certain orbit sets of unimodular rows,” J. Algebra, 82, 363–397 (1983).

    MathSciNet  MATH  Google Scholar 

  17. A. Lavrenov and S. Sinchuk, “A Horrocks-type theorem for even orthogonal K2,” arXiv:1909.02637v1 (2019).

    Google Scholar 

  18. A. W. Mason, “On subgroups of GL(n,A) which are generated by commutators. II,” J. reine angew. Math., 322, 118–135 (1981).

    MathSciNet  MATH  Google Scholar 

  19. A. W. Mason and W. W. Stothers, “On subgroups of GL(n,A) which are generated by commutators,” Invent. Math., 23, 327–346 (1974).

    MathSciNet  MATH  Google Scholar 

  20. B. Nica, “A true relative of Suslin’s normality theorem,” Enseign. Math., 61, No. 1–2, 151–159 (2015).

    MathSciNet  MATH  Google Scholar 

  21. A. Stepanov, “Elementary calculus in Chevalley groups over rings,” J. Prime Res. Math., 9, 79–95 (2013).

    MathSciNet  MATH  Google Scholar 

  22. A. V. Stepanov, “Non-abelian K-theory for Chevalley groups over rings,” J. Math. Sci., 209, No. 4, 645–656 (2015).

    MathSciNet  MATH  Google Scholar 

  23. A. Stepanov, “Structure of Chevalley groups over rings via universal localization,” J. Algebra, 450, 522–548 (2016).

    MathSciNet  MATH  Google Scholar 

  24. A. Stepanov and N. Vavilov, “Decomposition of transvections: a theme with variations,” K-Theory, 19, No. 2, 109–153 (2000).

    MathSciNet  MATH  Google Scholar 

  25. A. A. Suslin, “The structure of the special linear group over polynomial rings,” Izv. Akad. Nauk SSSR Ser. Mat., 11, No. 2, 235–253 (1977).

    MATH  Google Scholar 

  26. O. I. Tavgen, “Bounded generation of Chevalley groups over rings of S-integer algebraic numbers,” Izv. Akad. Nauk SSSR Ser. Mat., 54, No. 1, 97–122 (1990).

    MathSciNet  MATH  Google Scholar 

  27. L. N. Vaserstein, “On the normal subgroups of the GLn of a ring,” in: Algebraic K-Theory, Evanston 1980, Lect. Notes Math., 854, Springer, Berlin (1981), pp. 454–465.

    Google Scholar 

  28. N. Vavilov, “Unrelativised standard commutator formula,” Zap. Nauchn. Semin. POMI, 470, 38–49 (2018).

    Google Scholar 

  29. N. Vavilov, “Commutators of congruence subgroups in the arithmetic case,” Zap. Nauchn. Semin. POMI, 479, 5–22 (2019).

    MathSciNet  Google Scholar 

  30. N. A. Vavilov and A. V. Stepanov, “Standard commutator formula,” Vestnik St.Petersburg State Univ. Ser. 1, 41, No. 1, 5–8 (2008).

    MathSciNet  MATH  Google Scholar 

  31. N. A. Vavilov and A. V. Stepanov, “Standard commutator formulae, revisited,” Vestnik St.Petersburg State Univ. Ser. 1, 43, No. 1, 12–17 (2010).

    MATH  Google Scholar 

  32. N. A. Vavilov and A. V. Stepanov, “Linear groups over general rings I. Generalities,” J. Math. Sci., 188, No. 5, 490–550 (2013).

    MathSciNet  MATH  Google Scholar 

  33. N. Vavilov and Z. Zhang, “Generation of relative commutator subgroups in Chevalley groups. II,” Proc. Edinb. Math. Soc., 63, No. 2, 497–511 (2020).

    MathSciNet  MATH  Google Scholar 

  34. N. Vavilov and Z. Zhang, “Commutators of relative and unrelative elementary unitary groups,” arXiv:2004.00576 (2020), 1–40.

  35. N. Vavilov and Z. Zhang, “Commutators of relative and unrelative elementary subgroups in Chevalley groups,” arXiv:2003.07230 (2020), 1–18.

  36. H. You, “On subgroups of Chevalley groups which are generated by commutators,” Dongbei Shida Xuebao, No. 2, 9–13 (1992).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Vavilov.

Additional information

To the remarkable St.Petersburg algebraist Alexander Generalov

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 485, 2019, pp. 58–71.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vavilov, N., Zhang, Z. Commutators of Relative and Unrelative Elementary Groups, Revisited. J Math Sci 251, 339–348 (2020). https://doi.org/10.1007/s10958-020-05094-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-020-05094-4

Navigation