Skip to main content
Log in

Distribution of Complex Algebraic Numbers on the Unit Circle

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

For −π ≤ β1 < β2 ≤ π, denote by Φβ1,β2(Q) the amount of algebraic numbers of degree 2m, elliptic height at most Q, and arguments in [β1, β2], lying on the unit circle. It is proved that

$$ {\Phi}_{\beta_1,{\beta}_2}(Q)={Q}^{m+1}\underset{\beta_1}{\overset{\beta_2}{\int }}p(t) dt+O\left({Q}^m\log Q\right),\kern1em Q\to \infty, $$

where p(t) coincides up to a constant factor with density of the roots of a random trigonometrical polynomial. This density is calculated explicitly using the Edelman–Kostlan formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Bachmann, “Zahlentheorie. II. Theil,” Die Analytische Zahlentheorie, BG Teubner, Leipzig (1894).

  2. F. Calegari and Z. Huang, “Counting Perron numbers by absolute value,” J. London Math. Soc., 96, 181–200 (2017).

    Article  MathSciNet  Google Scholar 

  3. S.-J. Chern and J. Vaaler, “The distribution of values of Mahler’s measure,” J. Reine Angew. Math., 540, 1–47 (2001).

    Article  MathSciNet  Google Scholar 

  4. H. Davenport, “On a principle of Lipschitz,” J. Lond. Math. Soc., 26, No. 3, 179–183 (1951).

    Article  MathSciNet  Google Scholar 

  5. A. Edelman and E. Kostlan, “How many zeros of a random polynomial are real,” Bull. Amer. Math. Soc., 32, No. 1, 1–37 (1995).

    Article  MathSciNet  Google Scholar 

  6. K. Fang and Y. Zhang, Generalized Multivariate Analysis, Springer, Berlin (1990).

    MATH  Google Scholar 

  7. F. Götze, D. Kaliada, and D. Zaporozhets, “Distribution of complex algebraic numbers,” Proc. Amer. Math. Soc., 145, No. 1, 61–71 (2017), arXiv:1410.3623 (2014).

  8. F. Götze, D. Kaliada, and D. Zaporozhets, “Joint distribution of conjugate algebraic numbers: a random polynomial approach,” arXiv:1703.02289 (2017).

  9. D. Kaliada, “On the density function of the distribution of real algebraic numbers,” arXiv:1405.1627 (2014).

  10. S. Lang, Algebraic Number Theory, Addison-Wesley Publishing Co., Mass.–London–Don Mills (1970).

    MATH  Google Scholar 

  11. D. Masser and J. D. Vaaler, “Counting algebraic numbers with large height I,” in: Diophantine Approximation, Dev. Math., Springer, Vienna (2008), pp. 237–243.

    MATH  Google Scholar 

  12. H. Rademacher, Lectures on Elementary Number Theory, Huntington (1977).

  13. G. Kuba, “On the distribution of reducible polynomials,” Math. Slovaca., 59, No. 3, 349–356 (2009).

    Article  MathSciNet  Google Scholar 

  14. V. V. Prasolov, Polynomials, Springer, Berlin (2004).

    Book  Google Scholar 

  15. M. Widmer, “Lipschitz class, narrow class, and counting lattice points,” Proc. Amer. Math. Soc., 140, No. 2, 677–689 (2012).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Götze.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 474, 2018, pp. 90–107.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Götze, F., Gusakova, A., Kabluchko, Z. et al. Distribution of Complex Algebraic Numbers on the Unit Circle. J Math Sci 251, 54–66 (2020). https://doi.org/10.1007/s10958-020-05064-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-020-05064-w

Navigation