Skip to main content
Log in

Model of the Maxwell Compressible Fluid

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

A model of viscoelastic barotropic Maxwell fluid is investigated. The unique solvability theorem is proved for the corresponding initial-boundary value problem. The associated spectral problem is studied. We prove statements on localization of the spectrum, on the essential and discrete spectra, and on the asymptotic behavior of the spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Avakian, “Asymptotic distribution of the spectrum of a linear pencil perturbed with analytic operator-function,” Funktsional. Anal. i Prilozhen., 12, No. 2, 66-67 (1978).

    MathSciNet  Google Scholar 

  2. T. Ya. Azizov and I. S. Iokhvidov, Essentials of Theory of Linear Operators in Spaces with Indefinite Metrics [in Russian], Nauka, Moscow (1986).

  3. T. Ya. Azizov, N. D. Kopachevskii, and L. D. Orlova, “Evolution and spectral problems generated by the problem of small motions of viscoelastic fluid,” Tr. St.-Peterbg. Mat. Obshch., 6, 5–33 (1998).

    Google Scholar 

  4. M. Sh. Birman and M. Z. Solomiak, “Asymptotics of the spectrum of differential equations,” Math. Anal., 14, 5–58 (1977).

    Article  MathSciNet  Google Scholar 

  5. I. Gohberg, S. Goldberg, and M. A. Kaashoek, Classes of Linear Operators. Vol. 1, Birkhäuser, Basel—Boston—Berlin (1990).

  6. G. Grubb and G. Geymonat, “The essential spectrum of elliptic systems of mixed order,” Math. Ann., 227, 247–276 (1977).

    Article  MathSciNet  Google Scholar 

  7. T. Kato, Perturbation Theory for Linear Operators [Russian translation], Mir, Moscow (1972).

  8. W. Kelvin (Thomson), “On the theory of viscoelastic fluids,” Math. A. Phys. Pap., 3, 27–84 (1875).

  9. N. D. Kopachevskii, S. G. Krein, and Ngo Zuy Kan, Operator Methods in Linear Hydrodynamics: Evolution and Spectral Problems [in Russian], Nauka, Moscow (1989).

  10. S. G. Krein, Linear Differential Equations in Banach Space [in Russian], Nauka, Moscow (1967).

  11. A. S. Markus, Introduction to Spectral Theory of Polynomial Operator Pencils [in Russian], Shtiintsa, Kishinev (1986).

  12. A. I. Markushevich, Theory of Analytic Functions. Vol. 1 [in Russian], Nauka, Moscow (1967).

  13. J. C. Maxwell, “On the dynamical theory of gases,” Philos. Trans. R. Soc. London, 157, 49–88 (1867).

    Article  Google Scholar 

  14. J. C. Maxwell, “On the dynamical theory of gases,” London Edinburgh Dublin Philos. Mag., 35, 129–145 (1868).

    Article  Google Scholar 

  15. S. G. Mikhlin, “Spectrum of an operator pencil of the elasticity theory,” Usp. Mat. Nauk, 28, No. 3, 43–82 (1973).

    Google Scholar 

  16. A. I. Miloslavskii, “Spectrum of small oscillations of viscoelastic medium with memory, Dokl. AN SSSR, 309, No. 3, 532–536 (1989).

  17. J. G. Oldroyd, “On the formulation of rheological equations of state,” Proc. Roy. Soc. London. Ser. A, 200, 523–541 (1950).

    MathSciNet  MATH  Google Scholar 

  18. J. G. Oldroyd, “The elastic and viscous properties of emulsions and suspensions,” Proc. Roy. Soc. London Ser. A. Math. Phys. Eng. Sci., 218, 122–132 (1953).

    MATH  Google Scholar 

  19. M. B. Orazov, Questions of the Spectral Theory of Nonself-Adjoint Operators and Related Problems of Mechanics, Doctoral thesis, Ashkhabad (1982).

  20. A. P. Oskolkov, “Inital-boundary value problems for the equations of motion of the Kelvin–Voight and Oldroid fluids,” Tr. Mat. Inst. Steklova, 179, 126–164 (1987).

    Google Scholar 

  21. G. V. Radzievskii, “Quadratic pencil of operators,” Preprint, Kiev (1976).

  22. N. A. Rautian and V. V. Vlasov, “Well-posedness and spectral analysis of hyperbolic Volterra equations of convolution type,” Springer Proc. Math. Stat., 164, 411–419 (2015).

    MathSciNet  MATH  Google Scholar 

  23. K. Rektoris, Variational Methods in Mathematical Physics and Technics [in Russian], Mir, Moscow (1985).

  24. V. V. Vlasov and N. A. Rautian, “Spectral analysis of hyperbolic Volterra integrodifferential equations,” Dokl. RAN, 464, No. 6, 656–660 (2015).

    MathSciNet  Google Scholar 

  25. W. Voight, “Uber die innere Reibung der festen Körper, inslesondere der Krystalle,” Göttingen Abh., 36, No. 1, 3–47 (1889).

    Google Scholar 

  26. W. Voight, “Uber innex Reibung fester Körper, insbesondere der Metalle,” Ann. Phys. U. Chem., 47, No. 9, 671–693 (1892).

    Article  Google Scholar 

  27. D. A. Zakora, “Model of the Oldroyd compressible fluid,” Sovrem. Mat. Fundam. Napravl., 61, 41–66 (2016).

    MathSciNet  Google Scholar 

  28. V. G. Zvyagin and M. V. Turbin, “The study of initial-boundary value problems for mathematical models of the motion of Kelvin–Voigt fluids,” Sovrem. Mat. Fundam. Napravl., 31, 3–144 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Zakora.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 63, No. 2, Proceedings of the Crimean Autumn Mathematical School-Symposium, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakora, D.A. Model of the Maxwell Compressible Fluid. J Math Sci 250, 593–610 (2020). https://doi.org/10.1007/s10958-020-05030-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-020-05030-6

Navigation