Skip to main content
Log in

The Constructing of Energy Functions for Ω-Stable Diffeomorphisms on 2- and 3-Manifolds

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we review results related to the existence of the energy function for discrete dynamical systems. Also, we consider the technique of constructing such functions for various classes of Ω-stable and structurally stable diffeomorphisms on manifolds of dimension 2 and 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Artin and R. H. Fox, “Some wild cells and spheres in three-dimensional space,” Ann. Math. (2), 49, 979–990 (1948).

  2. Ch. Bonatti and V. Grines, “Knots as topological invariant for gradient-like diffeomorphisms of the sphere S3,J. Dyn. Control Syst., 6, 579–602 (2000).

    Article  Google Scholar 

  3. C. Conley, Isolated Invariant Sets and Morse Index, AMS, Providence (1978).

    Book  Google Scholar 

  4. H. Debrunner and R. Fox, “A mildly wild imbedding of an n-frame,” Duke Math. J., 27, 425–429 (1960).

    Article  MathSciNet  Google Scholar 

  5. J. Franks, “Nonsingular Smale flow on S3,Topology, 24, No. 3, 265–282 (1985).

    Article  MathSciNet  Google Scholar 

  6. J. Franks, “A variation on the Poincare–Birkhoff theorem,” Contemp. Math., 81, 111–117 (1988).

    Article  MathSciNet  Google Scholar 

  7. V. Z. Grines, “On topological classification of structurally stable diffeomorphisms of surfaces with one-dimensional attractors and repellers,” Mat. Sb., 188, 57–94 (1997).

    Article  MathSciNet  Google Scholar 

  8. V. Z. Grines, F. Laudenbakh, and O. Pochinka, “A quasi-energy function for diffeomorphisms with wild separatrices,” Mat. Zametki, 86, No. 2, 175–183 (2009).

    Article  MathSciNet  Google Scholar 

  9. V. Grines, F. Laudenbach, and O. Pochinka, “Self-indexing energy function for Morse–Smale diffeomorphisms on 3-manifolds,” Mosc. Math. J., 9, No. 4, 801–821 (2009).

    Article  MathSciNet  Google Scholar 

  10. V. Z. Grines, F. Laudenbach, and O. V. Pochinka, “Dynamically ordered energy function for Morse–Smale diffeomorphisms on 3-manifolds,” Proc. Steklov Inst. Math., 278, No. 1, 27–40 (2012).

    Article  MathSciNet  Google Scholar 

  11. V. Grines, Y. Levchenko, V. Medvedev, and O. Pochinka, “The topological classification of structural stable 3-diffeomorphisms with two-dimensional basic sets,” Nonlinearity, 2015, 28, No. 11, 4081–4102.

    Article  MathSciNet  Google Scholar 

  12. V. Grines, T. Medvedev, and O. Pochinka, Dynamical Systems on 2- and 3-Manifolds, Springer, Cham (2016).

    Book  Google Scholar 

  13. V. Z. Grines, V. S. Medvedev, and E. V. Zhuzhoma, “On surface attractors and repellers in 3-manifolds,” Mat. Zametki, 78, No. 6, 813–826 (2005).

    Article  MathSciNet  Google Scholar 

  14. V. Z. Grines, M. K. Noskova, and O. V. Pochinka, “The construction of energy functions for A diffeomorphisms with two-dimensional nonwandering sets on 3-manifolds,” Proc. Srednevolzhsk. Math. Soc., 17, No. 3, 12–17 (2015).

    MATH  Google Scholar 

  15. V. Z. Grines, M. K. Noskova, and O. V. Pochinka, “The construction of an energy function for three-dimensional cascades with a two-dimensional expanding attractor,” Tr. Mosk. Mat. Obs., 76, No. 2, 271–286 (2015).

    MATH  Google Scholar 

  16. V. Z. Grines and E. V. Zhuzhoma, “Structurally stable diffeomorphisms with basic sets of codimension one,” Izv. Ross. Akad. Nauk Ser. Mat., 66, No. 2, 3–66 (2002).

    Article  MathSciNet  Google Scholar 

  17. V. Grines and E. Zhuzhoma, “On structurally stable diffeomorphisms with codimension one expanding attractors,” Trans. Am. Math. Soc., 357, No. 2, 617–667 (2005).

    Article  MathSciNet  Google Scholar 

  18. V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, and O. V. Pochinka, “Global attractor and repeller of Morse–Smale diffeomorphisms,” Tr. Mat. Inst. Steklova, 271, 111–133 (2010).

  19. V. Z. Grines, E. V. Zhuzhoma, and O. V. Pochinka, “Rough diffeomorphisms with basic sets of codimension one,” Sovrem. Mat. Fundam. Napravl., 57, 5–30 (2015).

    MATH  Google Scholar 

  20. O. G. Harrold, H. C. Griffith, and E. E. Posey, “A characterization of tame curves in three-space,” Trans. Am. Math. Soc., 79, 12–34 (1955).

    Article  MathSciNet  Google Scholar 

  21. J. Kaplan, J. Mallet-Paret, and J. Yorke, “The Lyapunov dimension of nowhere differentiable attracting torus,” Ergodic Theory Dynam. Systems, 2, 261–281 (1984).

  22. V. S. Medvedev and E. V. Zhuzhoma, “On nonorientable two-dimensional basic sets on 3-manifolds,” Mat. Sb., 193, No. 6, 83–104 (2002).

    Article  MathSciNet  Google Scholar 

  23. K. R. Meyer, “Energy functions for Morse–Smale systems,” Am. J. Math., 90, 1031–1040 (1968).

    Article  MathSciNet  Google Scholar 

  24. J. Milnor, The Morse Theory [Russian translation], Platon, Volgograd (1969).

  25. T. M. Mitriakova, O. V. Pochinka, and A. E. Shishenkova, “Energy functions for diffeomorphisms of surfaces with finite hyperbolic chain recurrent sets,” J. Srednevolzhsk. Math. Soc., 14, No. 1, 98–107 (2012).

    MATH  Google Scholar 

  26. A. A. Oshemkov and V. V. Sharko, “On classification of Morse–Smale flows on two-dimensional manifolds,” Mat. Sb., 189, No. 8, 93–140 (1998).

    Article  MathSciNet  Google Scholar 

  27. J. Palis, “On Morse–Smale dynamical systems,” Topology, 8, 385–404 (1969).

    Article  MathSciNet  Google Scholar 

  28. D. Pixton, “Wild unstable manifolds,” Topology, 16, 167–172 (1977).

    Article  MathSciNet  Google Scholar 

  29. R. V. Plykin, “Sources and sinks of A-diffeomorphisms of surfaces,” Mat. Sb., 94, 243–264 (1974).

    MathSciNet  Google Scholar 

  30. R. V. Plykin, “On the structure of centralizers of Anosov diffeomorphisms of the torus,” Usp. Mat. Nauk, 53, No. 6, 259–260 (1998).

    Article  MathSciNet  Google Scholar 

  31. M. M. Postnikov, Lectures in Geometry. Semester V. Riemannian Geometry [in Russian], Faktorial, Moscow (1998).

  32. C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, CRC Press, Boca Raton (1999).

    MATH  Google Scholar 

  33. M. Shub, “Morse–Smale diffeomorphisms are unipotent on homology,” Dynamical Systems, Academic Press, New York, 489–491 (1973).

  34. M. Shub and D. Sullivan, “Homology theory and dynamical systems,” Topology, 4, 109–132 (1975).

    Article  MathSciNet  Google Scholar 

  35. S. Smale, “Morse inequalities for a dynamical system,” Bull. Am. Math. Soc., 66, 43–49 (1960).

    Article  MathSciNet  Google Scholar 

  36. S. Smale, “On gradient dynamical systems,” Ann. Math. (2), 74, 199–206 (1961).

  37. S. Smale, “Differentiable dynamical systems,” Bull. Am. Math. Soc., 73, 747–817 (1967).

    Article  MathSciNet  Google Scholar 

  38. S. Smale, “Differentiable dynamical systems,” Usp. Mat. Nauk, 25, No. 1, 113–185 (1970).

    MathSciNet  MATH  Google Scholar 

  39. W. Wilson, “Smoothing derivatives of functions and applications,” Trans. Am. Math. Soc., 139, 413–428 (1969).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Z. Grines.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 63, No. 2, Proceedings of the Crimean Autumn Mathematical School-Symposium, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grines, V.Z., Pochinka, O.V. The Constructing of Energy Functions for Ω-Stable Diffeomorphisms on 2- and 3-Manifolds. J Math Sci 250, 537–568 (2020). https://doi.org/10.1007/s10958-020-05028-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-020-05028-0

Navigation