Skip to main content
Log in

Behavior of blow-up solutions for quasilinear parabolic equations

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We study the quasilinear parabolic equation (|u|q − 1u)t − Δpu = 0 in a multidimensional domain (0; T) × Ω under the condition u(t; x) = f(t; x) on (0; T) × 𝜕Ω, where the boundary function f blows-up at a finite time T, i.e., f(t; x) → ∞ as tT. For pq > 0 and the boundary function f with power-like behavior, the upper bounds of weak solutions of the problem are obtained. The behavior of solutions at the transition from the case where p > q to p = q is investigated. A general approach within the method of energy estimates to such problems is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. W. Alt and S. Luckhaus, “Quasilinear elliptic-parabolic differential equations,” Math. Z., 183(3), 311–341 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  2. A.-J.-C. Barré de Saint-Venant, De la Torsion des Prismes, Imprimére Impériale, Paris, 1855.

    MATH  Google Scholar 

  3. A.-J.-C. Barré de Saint-Venant, “Mémoire sur la torsion des prismes,” Mémoires Divers des Savants étrangers, Acad. Sci. Paris, 14, 233-560 (1856).

    Google Scholar 

  4. A.-J.-C. Barré de Saint-Venant, “Mémoire sur la exion des prismes,” J. de Math. de Liouville, Ser. II, 1, 89 (1856).

    Google Scholar 

  5. V. A. Galaktionov and A. E. Shishkov, “Saint-Venant’s principle in blow-up for higher order quasilinear parabolic equations,” Proc. Roy. Soc. Edinburgh. Sect. A, 133(5), 1075–1119 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  6. V. A. Galaktionov and A. E. Shishkov, “Structure of boundary blow-up for higher-order quasilinear parabolic equations,” Proc. Roy. Soc. London., Ser. A, Math. Phys. Eng. Sci., 460, 3299–3325 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  7. V. A. Galaktionov and A. E. Shishkov, “Self-similar boundary blow-up for higher-order quasilinear parabolic equations,” Proc. Roy. Soc. Edinburgh. Sect. A, 135A(5), 1195–1227 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  8. V. A. Galaktionov and A. E. Shishkov, “Higher-order quasilinear parabolic equations with singular initial data,” Comm. Contemp. Math., 8(3), 331–354 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  9. J. K. Knowles, “On Saint-Venant’s principle in the two-dimensional linear theory of elastisity,” Arch. Rat. Mech. Anal., 21, 1–22 (1966).

    Article  Google Scholar 

  10. J. K. Knowles, “A Saint-Venant’s principle for a class of second-order elliptic boundary-value problems,” Z. angew. Math. Phys., 18, 473–490 (1967).

    Article  MATH  Google Scholar 

  11. J. K. Knowles, “On the spatial decay of the heat equation,” Z. angew. Math. Phys., 2, 1050–1056 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Campanato, “Equazioni paraboliche del secondo ordine e spasi L2, δ),” Ann. Mat. Pura Appl., 73, 55–102 (1966).

    Article  MathSciNet  Google Scholar 

  13. A. A. Kovalevsky, I. I. Skrypnik, and A. E. Shishkov, Singular Solutions in Nonlinear Elliptic and Parabolic Equations, De Gruyter, Basel, 2016.

    Book  MATH  Google Scholar 

  14. O. A. Oleinik, “On the uniqueness of the solutions of the Cauchy problem for general parabolic systems in classes of rapidly increasing functions,” Uspekhi Mat. Nauk, 29(5), 229–230 (1974).

    MathSciNet  Google Scholar 

  15. O. A. Oleinik and G. A. Iosif’yan, “An analogue of Saint-Venant’s principle and the uniqueness of solutions of boundary-value problem for parabolic equations in unbounded domains,” Russian Math. Surveys, 31, 153–178 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  16. O. A. Oleinik and E. V. Radkevich, “Method of introducing of a parameter for evolution equations,” Russian Math. Surveys, 33, 7–84 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  17. V. A. Kondratiev and O. A. Oleinik, “On the behaviour of generalized solutions of the Dirichlet problem for higher-order elliptic equations in a neighbourhood of the boundary,” Zap. Nauchn. Semin. LOMI, 115, 114–125 (1982).

    Google Scholar 

  18. A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov, Blow-up in Quasilinear parabolic equations, De Gruyter, New York, 1995.

    Book  MATH  Google Scholar 

  19. A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov, “Localization of diffusion processes in media with constant properties,” Soviet Phys. Dokl., 24(7), 543–545 (1979).

    Google Scholar 

  20. A. A. Samarskii and I. M. Sobol’, “Examples of numerical computation of temperature waves,” USSR Comput. Math. and Math. Phys., 3, 945–970 (1963).

    Article  Google Scholar 

  21. A. E. Shishkov and A. G. Shchelkov, “Blow-up boundary regimes for general quasilinear parabolic equations in multidimensional domains,” Sbornik: Math., 190(3), 447–479 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. E. Shishkov and Ye. A. Yevgenieva, “Localized peaking regimes for quasilinear parabolic equations,” Math. Nachricht., 292(6), 1349–1374 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  23. A. E. Shishkov and Ye. A. Yevgenieva, “Localized blow-up regimes for quasilinear doubly degenerate parabolic equations,” Math. Notes, 106(4), 639—650 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  24. R. A. Toupin, “Saint-Venant’s principle,” Arch. Rat. Mech. Anal., 18, 83–96 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  25. Ye. A. Yevgenieva, “Limiting profile of solutions of quasilinear parabolic equations with flat peaking,” J. Math. Sci., 234(1), 106–116 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  26. Ye. A. Yevgenieva, “Quasilinear parabolic equations with a degenerate absorption potential,” J. Math. Sci., 242(3), 457–468 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  27. Ye. A. Yevgenieva and A. E. Shishkov, “Method of energy estimates for the study of a behavior of weak solutions of the equation of slow diffusion with singular boundary data,” J. Math. Sci., 244(1), 95–103 (2020).

    Article  MATH  Google Scholar 

  28. Ye. A. Yevgenieva, “Propagation of singularities for large solutions of quasilinear parabolic equations,” J. Math. Phys., Anal., Geom., 15(1), 131–144 (2019).

    MathSciNet  MATH  Google Scholar 

  29. S. Stampacchia, “Équations elliptiques du second ordre à coefficients discontinus,” in: Séminaire de Mathématiques Supérieures, No. 16, 1965, Univ. Montreal, Montreal,1966.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yevgeniia A. Yevgenieva.

Additional information

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 17, No. 2, pp. 278–295 April–June, 2020.

The study was financially supported by the National Academy of Sciences of Ukraine in the frame of projects 0120U100177 and 0119U1020890.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yevgenieva, Y.A. Behavior of blow-up solutions for quasilinear parabolic equations. J Math Sci 249, 804–816 (2020). https://doi.org/10.1007/s10958-020-04974-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-020-04974-z

Keywords

Navigation