Abstract. Some estimates of the parameters of a nonlinear regression between the variables of X and Y are constructed for the arctangent as a regression function. The obtained estimates are used to evaluate the unknown parameters of the Cauchy distribution. Computer simulations are performed, and the estimates are compared with another estimates such as the quantile ones, maximum liklyhood estimates, and some others. The confidence intervals for parameters of the Cauchy distribution are obtained.
Article PDF
References
V. S. Korolyuk, N. I. Portenko, A. V. Skorokhod, and A. F. Turbin, Handbook on the Theory of Probabilities and Mathematical Statistics [in Russian], Nauka, Moscow, 1985.
R. N. Vadzinskii, Handbook on Probabilistic Distributions [in Russian], Nauka, St.-Petersburg, 2001.
J. B. Copas, “On the unimodality of the likelihood for the Cauchy distribution,” Biometrika, 62, 701–704 (1975).
T. S. Ferguson, “Maximum likelihood estimates of the parameters of the Cauchy distribution for samples of size 3 and 4,” J. Amer. Statist. Ass., 73, 211–213 (1978).
M. G. Kendall and A. Stuart, The Advanced Theoty of Statistics, Vols. 1–3, Griffin, London, 1961–1966.
V. Yu. Dubnitskii and A. I. Khodyrev, “Estimation of parameters of a Cauchy two-parameter distribution within the method of maximum likelihood for nongrouped and grouped of observations,” Syst. Obrob. Inf., 2(29), 17–20 (2011).
M. L. Shinkeev, “Estimation of parameters of a Cauchy distribution,” Nauch. Obozr., 3, 77–81 (2012).
I. A. Koutrouvelis, “Estimation of location and scale in Cauchy distributions using the empirical characteristic function,” Biometrika, 65(1), 205–213 (1982).
F. Nagy, “Parameter estimation of the Cauchy distribution in information theory approach,” J. Univer. Comp. Sci., 12, 1332–1344 (2006).
S. Fegyverneki, “A simple robust estimation for parameters of Cauchy distribution,” Miskolc Math. Notes, 14(3), 887–892 (2013).
D. Pekasiewicz, “Application of quantile methods to estimation of Cauchy distribution parameters,” Statistics Trans., New Ser., 15(1), 133–144 (2014).
V. M. Galkin, L. N. Erofeeva, S. V. Leshcheva, and V. E. Rykov, “The parameter estimates of Cauchy distribution,” Trudy Nizh. Novg. GTU im. Alekseeva, 3(110), 322–325 (2015).
A. H. Sameer, “Estimation of Cauchy parameters under ranked set sampling,” Int. J. Sci.: Basic Appl. Res., 28(2), 284–295 (2016).
I. V. Kuznetsov, V. F. Pisarenko, and M. V. Rodkin, “Methods of calculation of the damages from catastrophes of various types,” Ékonom. Matem. Met., 33(4), 39–50 (1997).
S. K. Abramov, Methods of Secondary Processing of Signals and Images in Remote Probing Systems by Using the Myriad Estimation [in Ukrainian], Author’s thesis on the Candidate degree (Techn. Sci.), Kharkiv, 2003.
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 17, No. 2, pp. 196–214 April–June, 2020.
Rights and permissions
About this article
Cite this article
Krykun, I.H. The Arctangent Regression and the Estimation of Parameters of the Cauchy Distribution. J Math Sci 249, 739–753 (2020). https://doi.org/10.1007/s10958-020-04970-3
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10958-020-04970-3