Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of Mathematical Sciences
  3. Article
The Arctangent Regression and the Estimation of Parameters of the Cauchy Distribution
Download PDF
Download PDF
  • Published: 19 August 2020

The Arctangent Regression and the Estimation of Parameters of the Cauchy Distribution

  • Ivan H. Krykun1,2 

Journal of Mathematical Sciences volume 249, pages 739–753 (2020)Cite this article

  • 156 Accesses

  • 1 Citations

  • Metrics details

Abstract. Some estimates of the parameters of a nonlinear regression between the variables of X and Y are constructed for the arctangent as a regression function. The obtained estimates are used to evaluate the unknown parameters of the Cauchy distribution. Computer simulations are performed, and the estimates are compared with another estimates such as the quantile ones, maximum liklyhood estimates, and some others. The confidence intervals for parameters of the Cauchy distribution are obtained.

Article PDF

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. V. S. Korolyuk, N. I. Portenko, A. V. Skorokhod, and A. F. Turbin, Handbook on the Theory of Probabilities and Mathematical Statistics [in Russian], Nauka, Moscow, 1985.

    Google Scholar 

  2. R. N. Vadzinskii, Handbook on Probabilistic Distributions [in Russian], Nauka, St.-Petersburg, 2001.

    Google Scholar 

  3. J. B. Copas, “On the unimodality of the likelihood for the Cauchy distribution,” Biometrika, 62, 701–704 (1975).

    Article  MathSciNet  Google Scholar 

  4. T. S. Ferguson, “Maximum likelihood estimates of the parameters of the Cauchy distribution for samples of size 3 and 4,” J. Amer. Statist. Ass., 73, 211–213 (1978).

    Article  Google Scholar 

  5. M. G. Kendall and A. Stuart, The Advanced Theoty of Statistics, Vols. 1–3, Griffin, London, 1961–1966.

    Google Scholar 

  6. V. Yu. Dubnitskii and A. I. Khodyrev, “Estimation of parameters of a Cauchy two-parameter distribution within the method of maximum likelihood for nongrouped and grouped of observations,” Syst. Obrob. Inf., 2(29), 17–20 (2011).

    Google Scholar 

  7. M. L. Shinkeev, “Estimation of parameters of a Cauchy distribution,” Nauch. Obozr., 3, 77–81 (2012).

    Google Scholar 

  8. I. A. Koutrouvelis, “Estimation of location and scale in Cauchy distributions using the empirical characteristic function,” Biometrika, 65(1), 205–213 (1982).

    Article  MathSciNet  Google Scholar 

  9. F. Nagy, “Parameter estimation of the Cauchy distribution in information theory approach,” J. Univer. Comp. Sci., 12, 1332–1344 (2006).

    Google Scholar 

  10. S. Fegyverneki, “A simple robust estimation for parameters of Cauchy distribution,” Miskolc Math. Notes, 14(3), 887–892 (2013).

    Article  MathSciNet  Google Scholar 

  11. D. Pekasiewicz, “Application of quantile methods to estimation of Cauchy distribution parameters,” Statistics Trans., New Ser., 15(1), 133–144 (2014).

    Google Scholar 

  12. V. M. Galkin, L. N. Erofeeva, S. V. Leshcheva, and V. E. Rykov, “The parameter estimates of Cauchy distribution,” Trudy Nizh. Novg. GTU im. Alekseeva, 3(110), 322–325 (2015).

    Google Scholar 

  13. A. H. Sameer, “Estimation of Cauchy parameters under ranked set sampling,” Int. J. Sci.: Basic Appl. Res., 28(2), 284–295 (2016).

    Google Scholar 

  14. I. V. Kuznetsov, V. F. Pisarenko, and M. V. Rodkin, “Methods of calculation of the damages from catastrophes of various types,” Ékonom. Matem. Met., 33(4), 39–50 (1997).

    Google Scholar 

  15. S. K. Abramov, Methods of Secondary Processing of Signals and Images in Remote Probing Systems by Using the Myriad Estimation [in Ukrainian], Author’s thesis on the Candidate degree (Techn. Sci.), Kharkiv, 2003.

Download references

Author information

Authors and Affiliations

  1. Vasyl’ Stus Donetsk National University, Vinnytsia, Ukraine

    Ivan H. Krykun

  2. Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slov’yansk, Ukraine

    Ivan H. Krykun

Authors
  1. Ivan H. Krykun
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Ivan H. Krykun.

Additional information

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 17, No. 2, pp. 196–214 April–June, 2020.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krykun, I.H. The Arctangent Regression and the Estimation of Parameters of the Cauchy Distribution. J Math Sci 249, 739–753 (2020). https://doi.org/10.1007/s10958-020-04970-3

Download citation

  • Received: 30 September 2019

  • Published: 19 August 2020

  • Issue Date: September 2020

  • DOI: https://doi.org/10.1007/s10958-020-04970-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Nonlinear regression
  • Cauchy distribution
  • estimation of parameters of the distribution
  • confidence interval
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

18.206.12.157

Not affiliated

Springer Nature

© 2023 Springer Nature