Skip to main content
Log in

Approximation of functions by linear summation methods in the Orlicz-type spaces

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Approximative properties of linear summation methods of Fourier series are considered in the Orlicz-type spaces SM. In particular, in terms of approximations by such methods, constructive characteristics are obtained for the classes of functions whose moduli of smoothness do not exceed a certain majorant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. K. Bary, A Treatise on Trigonometric Series, Macmillan, New York, 1964.

    MATH  Google Scholar 

  2. N. K. Bari and S. B. Stechkin, “Best approximations and differential properties of two conjugate functions,” Tr. Mosk. Mat. Obshch., 5, 483–522 (1956).

    MathSciNet  Google Scholar 

  3. Ja. S. Bugrov, “Bernstein type inequalities and their application to the study of differential properties of solutions of differential equations of higher order,” Mathematica (Cluj), 5(28), 5–25 (1968).

    Google Scholar 

  4. Ja. S. Bugrov, “ Properties of solutions of differential equations of higher order in terms of weight classes,” Trudy Mat. Inst. Steklov., 117, 47–61 (1972).

    MathSciNet  Google Scholar 

  5. P. Butzer and J. R. Nessel, Fourier Analysis and Approximation, Birkhäuser, Basel, 1971.

    Book  Google Scholar 

  6. S. Chaichenko, A. Shidlich, and F. Abdullayev, “Direct and inverse approximation theorems of functions in the Orlicz type spaces SM,” Math. Slovaca, 69(6), 1367–1380 (2019).

    Article  MathSciNet  Google Scholar 

  7. R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer, Berlin, 1993.

    Book  Google Scholar 

  8. G. H. Hardy and J. E. Littlewood, “Some properties of fractional integrals. II,” Math. Z., 34(1), 403–439 (1932).

    Article  MathSciNet  Google Scholar 

  9. F. Móricz, “Absolutely convergent Fourier series and function classes,” J. Math. Anal. Appl., 324(2), 1168–1177 (2006).

    Article  MathSciNet  Google Scholar 

  10. F. Móricz, “Absolutely convergent Fourier series and generalized Lipschitz classes of functions,” Colloq. Math., 113(1), 105–117 (2008).

    Article  MathSciNet  Google Scholar 

  11. F. Móricz, “Absolutely convergent Fourier series and function classes. II,” J. Math. Anal. Appl., 342(2), 1246–1249 (2008).

    Article  MathSciNet  Google Scholar 

  12. F. Móricz, “Higher order Lipschitz classes of functions and absolutely convergent Fourier series,” Acta Math. Hungar., 120(4), 355–366 (2008).

    Article  MathSciNet  Google Scholar 

  13. J. Prestin, V. V. Savchuk, and A. L. Shidlich, “Direct and inverse approximation theorems of 2π-periodic functions by Taylor–Abel–Poisson means,” Ukr. Math. J., 69(5), 766–781 (2017).

    Article  Google Scholar 

  14. W. Rudin, Function Theory in Polydiscs, Benjamin, New York, 1969.

    MATH  Google Scholar 

  15. V. V. Savchuk, “Approximation of holomorphic functions by Taylor–Abel–Poisson means,” Ukr. Math. J., 59(9), 1397–1407 (2007).

    Article  MathSciNet  Google Scholar 

  16. V. V. Savchuk and A. L. Shidlich, “Approximation of functions of several variables by linear methods in the space Sp,” Acta Sci. Math. (Szeged), 80(3–4), 477–489 (2014).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Chaichenko.

Additional information

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 17, No. 2, pp. 152–170 April–June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaichenko, S., Savchuk, V. & Shidlich, A. Approximation of functions by linear summation methods in the Orlicz-type spaces. J Math Sci 249, 705–719 (2020). https://doi.org/10.1007/s10958-020-04967-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-020-04967-y

Keywords

Navigation