Exponential Stability of Invariant Manifold for a Nonlinear Impulsive Multifrequency System

We study the exponential stability of a trivial invariant manifold of nonlinear extension of the dynamical system on a torus with impulsive jumps at nonfixed moments of time. The deduced sufficient conditions for the exponential stability of the trivial torus take into account the information on the qualitative properties of the dynamics of the system on the invariant manifold and weaken sufficient conditions available in the literature for a wide class of dynamical systems. New theorems impose constraints on a nonwandering set of the dynamical system guaranteeing the exponential stability of trivial manifold and are especially beneficial for the stability analysis of the extensions of dynamical systems with simple structures of the limit sets and recurrent trajectories.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. M. Samoilenko, Elements of the Mathematical Theory of Multi-Frequency Oscillations, Kluwer AP, Dordrecht etc. (1991)

    Google Scholar 

  2. 2.

    Yu. A. Mitropolsky, A. M. Samoilenko, and V. L. Kulik, Dichotomies and Stability in Nonautonomous Linear Systems, CRC Press (2002).

  3. 3.

    O. V. Kapustyan, M. O. Perestyuk, and I. V. Romanyuk, “Stability of global attractors of impulsive infinite-dimensional systems,” in: Ukr. Mat. Zh., 70, No. 1, 29–39 (2018); English translation: Ukr. Mat. J., 70, No. 1, 30–41 (2018).

    Google Scholar 

  4. 4.

    A. M. Samoilenko and N. A. Perestyuk, Differential Equations with Impulsive Effect [in Russian], Vyshcha Shkola, Kyiv (1987).

    Google Scholar 

  5. 5.

    A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore (1995).

    Google Scholar 

  6. 6.

    M. O. Perestyuk and P. V. Feketa, “Invariant manifolds of one class of systems of impulsive differential equations,” in: Nelin. Kolyv., 13, No. 2, 260–273 (2010); English translation: Nonlin. Oscillat., 13, No. 2, 240–252 (2010).

  7. 7.

    V. I. Tkachenko, “The Green function and conditions for the existence of invariant sets of impulse systems,” in: Ukr. Math. Zh., 41, No. 10, 1379–1383 (1989); English translation: Ukr. Math. J., 41, No. 10, 1187–1190 (1989).

  8. 8.

    M. M. Perestyuk and Yu. M. Perestyuk, “On the stability of toroidal manifold for one class of dynamical systems,” in: Nelin. Kolyv., 19, No. 4, 555–563 (2018); English translation: J. Math. Sci., 228, No. 3, 314–322 (2018).

  9. 9.

    M. O. Perestyuk and P. V. Feketa, “On preservation of the invariant torus for multifrequency systems,” in: Ukr. Mat. Zh., 65, No. 11, 1498–1505 (2014); English translation: Ukr. Mat. J., 65, No. 11, 1661–1669 (2014).

  10. 10.

    F. Asrorov, Yu. Perestyuk, and P. Feketa, “On the stability of invariant tori of a class of dynamical systems with the Lappo–Danilevskii condition,” in: Mem. Differ. Equat. Math. Phys., 72, 15–25 (2017).

    MathSciNet  MATH  Google Scholar 

  11. 11.

    P. Feketa and Yu. Perestyuk, “Perturbation theorems for a multifrequency system with pulses,” in: Nelin. Kolyv., 18, No. 2, 280–288 (2015); English translation: J. Math. Sci., 217, No. 4, 515–524 (2016).

  12. 12.

    O. V. Kapustyan, F. A. Asrorov, and Yu. M. Perestyuk, “On the exponential stability of a trivial torus for one class of nonlinear impulsive systems,” in: Nelin. Kolyv., 20, No. 2, 502–508 (2017); English translation: J. Math. Sci., 235, No. 3, 263–270 (2019).

  13. 13.

    M. Perestyuk and P. Feketa, “Invariant sets of impulsive differential equations with particularities in ω-limit set,” in: Abstr. Appl. Anal. (2011).

    Google Scholar 

  14. 14.

    P. Feketa, O. A. Kapustian, and M. M. Perestyuk, “Stability of trivial torus of nonlinear multifrequency systems via sign-definite quadratic forms,” in: Miskolc Math. Notes, 19, No. 1, 241–247 (2018).

    Google Scholar 

  15. 15.

    S. Dashkovskiy and P. Feketa, “Prolongation and stability of Zeno solutions to hybrid dynamical systems,” in: IFAC-PapersOnLine, 50, No. 1, 3429–3434 (2017).

    Google Scholar 

  16. 16.

    S. Dashkovskiy and P. Feketa, “Asymptotic properties of Zeno solutions,” in: Nonlin. Anal. Hybrid Syst., 30, 256–265 (2018).

    Google Scholar 

  17. 17.

    V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equations, Vol. VIII, Princeton Math. Ser., Princeton (1960).

    Google Scholar 

  18. 18.

    R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge (2013).

    Google Scholar 

  19. 19.

    B. P. Demidovich, Lectures on the Mathematical Theory of Stability [in Russian], Nauka, Moscow (1967).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to P. Feketa or T. Meurer or M. M. Perestyuk or Yu. M. Perestyuk.

Additional information

Published in Neliniini Kolyvannya, Vol. 22, No. 2, pp. 280–288, April–June, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feketa, P., Meurer, T., Perestyuk, M.M. et al. Exponential Stability of Invariant Manifold for a Nonlinear Impulsive Multifrequency System. J Math Sci 249, 694–703 (2020). https://doi.org/10.1007/s10958-020-04966-z

Download citation