Skip to main content
Log in

Influence of Dissipation on the Vortex Motion in Rotating Bose–Einstein Condensates

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Within the framework of the Gross–Pitaevskii model, we deduce a system of equations that describes the motion of quantized vortices in Bose–Einstein condensates. We consider a strongly anisotropic magnetic trap whose trapping potential is much higher in the direction z than in the transverse direction. Under the action of this potential, the condensate takes the form of a plane disk. The transition to the two-dimensional case enables us to apply the method of matched asymptotic expansions and obtain the equations of vortex motion in the explicit form. We take into account the rotation of the condensate as a whole and the effect of dissipative processes as a result of which the system of vortices comes to the equilibrium state. Some examples of the vortex motion are presented for different values of the external parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. I. Zueva, “Equations of motion of the vortices in Bose–Einstein condensates: influence of rotation and the inhomogeneity of density,” Mat. Met. Fiz.-Mekh. Polya, 57, No. 4, 68–83 (2014); English translation: J. Math. Sci., 220, No. 1. 82–102 (2017), DOI 10.1007/s10958-016-3169-3.

  2. L. M. Milne-Thomson, Theoretical Hydrodynamics, Macmillan, London (1955).

    MATH  Google Scholar 

  3. L. P. Pitaevskii, “Phenomenological theory of superfluidity near the λ-point,” Zh. Èksper. Teor. Fiz., 35, No. 2, 408–415 (1959); English translation: Sov. Phys. JETP, 8, No. 2, 282–287 (1959).

  4. M. Abramowitz and I. A. Stegun (editors), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York (1972).

    MATH  Google Scholar 

  5. Y. Castin and R. Dum, “Bose–Einstein condensates with vortices in rotating traps,” Europ. Phys. J. D, 7, No. 3, 399–412 (1999).

  6. S. Choi, S. A. Morgan, and K. Burnett, “Phenomenological damping in trapped atomic Bose–Einstein condensates,” Phys. Rev. A, 57, No. 5, 4057–4060 (1998).

    Article  Google Scholar 

  7. E. Weinan, “Dynamics of vortices in Ginzburg–Landau theories with applications to superconductivity,” Physica D, 77, No. 4, 383–404 (1994).

    Article  MathSciNet  Google Scholar 

  8. B. Gertjerenken, P. G. Kevrekidis, R. Carretero-González, and B. P. Anderson, “Generating and manipulating quantized vortices on-demand in a Bose–Einstein condensate: A numerical study,” Phys. Rev. A, 93, No. 2, 023604 (2016), https://doi.org/10.1103/PhysRevA.93.023604.

  9. S. Middelkamp, P. G. Kevrekidis, D. J. Frantzeskakis, R. Carretero-González, and P. Schmelcher, “Stability and dynamics of matter-wave vortices in the presence of collisional inhomogeneities and dissipative perturbations,” J. Phys. B: Atom., Molec. Opt. Phys., 43, No. 15, 155303 (2010), https://doi.org/10.1088/0953-4075/43/15/155303.

  10. J. С. Neu, “Vortices in complex scalar fields,” Physica D, 43, Nos. 2-3, 385–406 (1990).

    Article  MathSciNet  Google Scholar 

  11. A. A. Penckwitt, R. J. Ballagh, and C. W. Gardiner, “Nucleation, growth, and stabilization of Bose–Einstein condensate vortex lattices,” Phys. Rev Lett., 89, No. 26, 260402 (2002), https://doi.org/10.1103/PhysRevLett.89.260402.

    Article  Google Scholar 

  12. M. Tsubota and W. P. Halperin (editors), Progress in Low Temperature Physics: Quantum Turbulence, Vol. XVI, Elsevier, Amsterdam (2008).

  13. C. Raman, M. Köhl, R. Onofrio, D. S. Durfee, C. E. Kuklewicz, Z. Hadzibabic, and W. Ketterle, “Evidence for a critical velocity in a Bose–Einstein condensed gas,” Phys. Rev. Lett., 83, No. 13, 2502 (1999), https://doi.org/10.1103/PhysRevLett.83.2502.

    Article  Google Scholar 

  14. B. Y. Rubinstein and L. M. Pismen, “Vortex motion in the spatially inhomogeneous conservative Ginzburg–Landau model,” Physica D, 78, Nos. 1-2, 1–10 (1994).

    Article  MathSciNet  Google Scholar 

  15. M. Tsubota, K. Kasamatsu, and M. Ueda, “Vortex lattice formation in a rotating Bose–Einstein condensate,” Phys. Rev. A, 65, No. 2, 023603 (2002), https://doi.org/10.1103/PhysRevA.65.023603.

    Article  Google Scholar 

  16. J. C. Tzou, P. G. Kevrekidis, T. Kolokolnikov, and R. Carretero-González, “Weakly nonlinear analysis of vortex formation in a dissipative variant of the Gross–Pitaevskii equation,” SIAM J. Appl. Dynam. Syst., 15, No. 2, 904–922 (2016).

    Article  MathSciNet  Google Scholar 

  17. D. Yan, R. Carretero-González, D. J. Frantzeskakis, P. G. Kevrekidis, N. P. Proukakis, and D. Spirn, “Exploring vortex dynamics in the presence of dissipation: Analytical and numerical results,” Phys. Rev. A, 89, No. 4, 043613 (2014), https://doi.org/10.1103/PhysRevA.89.043613.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Zueva.

Additional information

Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 61, No. 1, pp. 86–100, January–March, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zueva, T.I. Influence of Dissipation on the Vortex Motion in Rotating Bose–Einstein Condensates. J Math Sci 249, 404–423 (2020). https://doi.org/10.1007/s10958-020-04950-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-020-04950-7

Keywords

Navigation