Skip to main content

Path Complexes and their Homologies


We introduce the notions of a path complex and its homologies. Particular cases of path homologies are simplicial homologies and digraph homologies. We state and prove some properties of path homologies, in particular, the K¨unneth formulas for Cartesian product and join, which happen to be true at the level of chain complexes.

This is a preview of subscription content, access via your institution.


  1. 1.

    E. Babson, H. Barcelo, M. de Longueville, and R. Laubenbacher, “Homotopy theory of graphs,” J. Algebraic Combin., 24, 31–44 (2006).

    MathSciNet  Article  Google Scholar 

  2. 2.

    H. Barcelo, X. Kramer, R. Laubenbacher, and Ch. Weaver, “Foundations of a connectivity theory for simplicial complexes,” Adv. Appl. Math., 26, 97–128 (2001).

    MathSciNet  Article  Google Scholar 

  3. 3.

    N. Bourbaki, Elements of Mathematics. Algebra I. Chapters 1–3 (1989).

  4. 4.

    B. Chen, S.-T. Yau, and Y.-N. Yeh, “Graph homotopy and Graham homotopy,” Discrete Math., 241, 153–170 (2001).

    MathSciNet  Article  Google Scholar 

  5. 5.

    A. Dimakis and F. Müller-Hoissen, “Differential calculus and gauge theory on finite sets,” J. Phys. A, Math. Gen., 27, No. 9, 3159–3178 (1994).

  6. 6.

    A. Dimakis and F. Müller-Hoissen, “Discrete differential calculus: graphs, topologies, and gauge theory,” J. Math. Phys., 35, No. 12, 6703–6735 (1994).

  7. 7.

    M. Gerstenhaber and S. D. Schack, “Simplicial cohomology is Hochschild cohomology,” J. Pure Appl. Algebra, 30, 143–156 (1983).

    MathSciNet  Article  Google Scholar 

  8. 8.

    A. Grigor’yan, Y. Lin, Yu. Muranov, and S.-T. Yau, Homologies of Path Complexes and Digraphs, arXiv:1207.2834v4 (2013).

  9. 9.

    A. Grigor’yan, Y. Lin, Yu. Muranov, and S.-T. Yau, “Homotopy theory for digraphs,” Pure Appl. Math. Quater., 10, No. 4, 619–674 (2014).

    MathSciNet  Article  Google Scholar 

  10. 10.

    A. Grigor’yan, Yu. Muranov, and S.-T. Yau, “Graphs associated with simplicial complexes,” Homology, Homotopy Appl., 16, No. 1, 295–311 (2014).

  11. 11.

    A. Grigor’yan, Yu. Muranov, and S.-T. Yau, “On a cohomology of digraphs and Hochschild cohomology,” J. Homotopy Relat. Struct., 11, No. 2, 209–230 (2016).

    MathSciNet  Article  Google Scholar 

  12. 12.

    A. Grigor’yan, Yu. Muranov, and S.-T. Yau, “Cohomology of digraphs and (undirected) graphs,” Asian J. Math., 19, 887–932 (2015).

    MathSciNet  Article  Google Scholar 

  13. 13.

    A. Grigor’yan, Yu. Muranov, and S.-T. Yau, “Homologies of digraphs and K¨unneth formulas,” Comm. Anal. Geom. (2016).

  14. 14.

    D. Happel, “Hochschild cohomology of finite-dimensional algebras,” in: Sém. d’Algèbre Paul Dubreil et Marie-Paul Malliavin, Lect. Notes Math., Vol. 1404, Springer, Berlin (1989), pp. 108–126.

  15. 15.

    A. V. Ivashchenko, “Contractible transformations do not change the homology groups of graphs,” Discrete Math., 126, 159–170 (1994).

    MathSciNet  Article  Google Scholar 

  16. 16.

    S. MacLane, Homology, Grundlag. Math. Wissensch., Vol. 114, Springer, Berlin (1963).

  17. 17.

    A. Tahbaz-Salehi and A. Jadbabaie, “Distributed coverage verification in sensor networks without location information,” IEEE Trans. Automatic Control, 55, 1837–1849 (2010).

    MathSciNet  Article  Google Scholar 

  18. 18.

    M. E. Talbi and D. Benayat, “Homology theory of graphs,” Mediterranean J. Math., 11, 813–828 (2014).

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to A. A. Grigor’yan or Yong Lin or Yu. V. Muranov or Shing-Tung Yau.

Additional information

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 21, No. 5, pp. 79–128, 2016.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grigor’yan, A.A., Lin, Y., Muranov, Y.V. et al. Path Complexes and their Homologies. J Math Sci 248, 564–599 (2020).

Download citation