Skip to main content
Log in

Ind-Varieties of Generalized Flags: A Survey

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

This paper is a review of results on the structure of homogeneous ind-varieties G/P of the ind-groups G = GL(ℂ), SL(ℂ), SO(ℂ), and Sp(ℂ), subject to the condition that G/P is the inductive limit of compact homogeneous spaces Gn/Pn. In this case, the subgroup PG is a splitting parabolic subgroup of G and the ind-variety G/P admits a “flag realization.” Instead of ordinary flags, one considers generalized flags that are, in general, infinite chains \( \mathcal{C} \) of subspaces in the natural representation V of G satisfying a certain condition; roughly speaking, for each nonzero vector 𝜐 of V , there exist the largest space in \( \mathcal{C} \), which does not contain 𝜐, and the smallest space in \( \mathcal{C} \), which contains v. We start with a review of the construction of ind-varieties of generalized flags and then show that these ind-varieties are homogeneous ind-spaces of the form G/P for splitting parabolic ind-subgroups PG. Also, we briefly review the characterization of more general, i.e., nonsplitting, parabolic ind-subgroups in terms of generalized flags. In the special case of the ind-grassmannian X, we give a purely algebraic-geometric construction of X. Further topics discussed are the Bott–Borel–Weil theorem for ind-varieties of generalized flags, finite-rank vector bundles on ind-varieties of generalized flags, the theory of Schubert decomposition of G/P for arbitrary splitting parabolic ind-subgroups PG, as well as the orbits of real forms on G/P for G = SL(ℂ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Baranov, “Finitary simple Lie algebras,” J. Algebra, 219, 299–329 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  2. W. Barth and A. Van de Ven, “A decomposability criterion for algebraic 2-bundles on projective spaces,” Invent. Math., 25, 91–106 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Billey and V. Lakshmibai, Singular Loci of Schubert Varieties, Progr. Math., 182, Birkh¨auser, Boston etc. (2000).

  4. A. Bjorner and F. Brenti, Combinatorics of Coxeter Groups, Grad. Texts Math., 231, Springer- Verlag (2005).

  5. R. Bott, “Homogeneous vector bundles,” Ann. Math., 66, 203–248 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  6. N. Bourbaki, Lie Groups and Lie Algebras. Chapters 4–6, Springer-Verlag (2002).

  7. E. Dan-Cohen, “Borel subalgebras of root-reductive Lie algebras,” J. Lie Theory, 18, 215–241 (2008).

    MathSciNet  MATH  Google Scholar 

  8. E. Dan-Cohen and I. Penkov, “Parabolic and Levi subalgebras of finitary Lie algebras,” Int. Math. Res. Not., 2010, No. 6, 1062–1101 (2010); https://doi.org/10.1093/imrn/rnp169

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Dan-Cohen, I. Penkov, and N. Snyder, “Cartan subalgebras of root-reductive Lie algebras, J. Algebra, 308, No. 2, 583–611 (2007).

  10. M. Demazure, “Une démonstration algébrique d’un théorème de Bott,” Invent. Math., 5, 349–356 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Demazure, “A very simple proof of Botts theorem,” Invent. Math., 33, 271–272 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  12. I. Dimitrov and I. Penkov, “Ind-varieties of generalized flags as homogeneous spaces for classical ind-groups,” Int. Math. Res. Not., 2004, No. 55, 2935–2953 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  13. I. Dimitrov and I. Penkov, “Borel subalgebras of \( \mathfrak{gl}\left(\infty \right) \),” Resenhas IME–USP, 6, Nos. 2/3, 153–163 (2004).

  14. I. Dimitrov and I. Penkov, “Weight modules of direct limit Lie algebras,” Int. Math. Res. Notes, 5, 223–249 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  15. I. Dimitrov, I. Penkov, and J. A. Wolf, “A Bott–Borel–Weil theory for direct limits of algebraic groups,” Am. J. Math., 124, 955–998 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Fels, A. T. Huckleberry, and J. A. Wolf, Cycle Spaces of Flag Domains: A Complex Geometric Viewpoint, Progr. Math., 245, Birkhäuser, Boston (2005).

  17. L. Fresse and I. Penkov, “Schubert decomposition for ind-varieties of generalized flags,” Asian J. Math., 21, No. 4, 599–630 (2017); math.RT/1506.08263.

  18. L. Fresse and I. Penkov, Orbit duality in ind-varieties of maximal flags, preprint.

  19. R. Hartshorne, “On the de Rham cohomology of algebraic varieties,” Inst. Hautes Études Sci. Publ. Math., 45, 5–99 (1976).

    MathSciNet  MATH  Google Scholar 

  20. E. Hristova and I. Penkov, “Decomposition of cohomology of vector bundles on homogeneous ind-spaces,” C. R. Acad. Bulg. Sci., 70, No. 7, 907–916 (2017); math.RT/1703.05086.

  21. H. Huang, “Some extensions of Witt’s theorem,” Lin. Multilin. Algebra, 57, 321–344 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. T. Huckleberry and J. A. Wolf, “Cycle spaces of real forms of SLn(ℂ),” in: Complex Geometry, Springer-Verlag, Berlin (2002), pp. 111–133.

  23. A. T. Huckleberry and J. A. Wolf, “Schubert varieties and cycle spaces,” Duke Math. J., 120, 229–249 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  24. A. T. Huckleberry and J. A. Wolf, “Injectivity of the double fibration transform for cycle spaces of flag domains,” J. Lie Theory, 14, 509–522 (2004).

    MathSciNet  MATH  Google Scholar 

  25. M. V. Ignatyev, I. Penkov, and J. A. Wolf, “Real group orbits on flag ind-varieties of SL(∞,ℂ),” in: Lie Theory and Its Applications in Physics. Selected Papers Based on the Presentations at the 11th Workshop, LT 11, Varna, Bulgaria, June 15–21, 2015, Springer Proc. Math. Stat., 191, Springer, Singapore (2016), pp. 111–135; math.AG/1601.04326.

  26. S. Kumar, Kac–Moody Groups, Their Flag Varieties and Representation Theory, Progr. Math., 204, Birkh¨auser, Boston (2002).

  27. O. Mathieu, “Formules de Demazure–Weyl, et généralisation du théorème de Borel–Weil–Bott,” C. R. Acad. Sci. Paris, Sér. I, 303, 391–394 (1986).

  28. O. Mathieu, Formules de Caractères pour les Algèbres de Kac–Moody Générales, Astérisque, Nos. 159–160, Soc. Math. France, Paris (1988).

  29. K.-H. Neeb and I. Penkov, “Cartan subalgebras of \( {\mathfrak{gl}}_{\infty } \),” Can. Math. Bull., 46, No. 4, 597–616 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  30. I. Penkov and A. Tikhomirov, “Linear ind-grassmannians.” Pure Appl. Math. Quart., 10, 289–323 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  31. I. Penkov and A. Tikhomirov, “On the Barth–Van de Ven–Tyurin–Sato theorem,” Sb. Math., 206, No. 6, 814–848 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  32. I. Penkov and A. Tikhomirov, “Triviality of vector bundles on twisted ind-Grassmannians,” Sb. Math., 202, No. 1, 1–39 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Pressley and G. Segal, Loop Groups, Oxford Math. Monogr. The Clarendon Press, Oxford Univ. Press, New York (1986).

  34. E. Sato, “On the decomposability of infinitely extendable vector bundles on projective spaces and Grassmann varieties,” J. Math. Kyoto Univ., 17, 127–150 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  35. A. N. Tyurin, “Vector bundles of finite rank over infinite varieties,” Math. USSR Izv., 10, No. 6, 1187–1204 (1976).

    Article  MATH  Google Scholar 

  36. J. A. Wolf, “The action of a real semisimple Lie group on a complex flag manifold, I. Orbit structure and holomorphic arc components,” Bull. Am. Math. Soc., 75, 1121–1237 (1969).

    Article  MATH  Google Scholar 

  37. J. A. Wolf, “The action of a real semisimple group on a complex flag manifold, II. Unitary representations on partially holomorphic cohomology spaces,” Mem. Am. Math. Soc., 138 (1974).

  38. J. A. Wolf, “Cycle spaces of infinite dimensional flag domains,” Ann. Glob. Anal. Geom., 50, No. 4, 315–346 (2016).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Ignatyev.

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 147, Proceedings of the Workshop on Algebra and Geometry of the Samara University, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignatyev, M.V., Penkov, I. Ind-Varieties of Generalized Flags: A Survey. J Math Sci 248, 255–302 (2020). https://doi.org/10.1007/s10958-020-04873-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-020-04873-3

Keywords and phrases

AMS Subject Classification

Navigation