Abstract
For the weighted parabolic equation v(x)ut − div (ω(x)um − 1 ∇ u) = f(x, t), u ≥ 0, m ≠ 1, we prove the local boundedness of weak solutions in terms of the weighted Riesz potential on the right-hand side of the equation.
Similar content being viewed by others
References
B. Abdellaoui and I. Peral Alonso, “Hölder reqularity and Harnack inequality for degenerate parabolic equations related to Caffarelli–Kohn–Nirenberg inequalities,” Nonlin. Anal., 57(7-8), 971-1003 (2004).
M. Aizerman and B. Simon, “Brownian motion and Harnack inequality for Schr¨odinger operators,” Comm. Pure Appl. Math., 35, 209-273 (1982).
D. G. Aronson and J. Serrin, “Local behavior of solutions of quasilinear parabolic equations,” Arch. Rat. Mech. Anal., 25, 81-122 (1967).
D. G. Aronson, “The porous medium equations,” in: Nonlinear Diffusion Problems, Springer, New York, 1986, pp. 1-46.
V. Bögelein, F. Duzaar, and U. Gianazza, “Continuity estimates for porous medium type equations with measure data,” J. Funct. Anal., 267, 3351-3396 (2014).
V. Bögelein, F. Duzaar, and U. Gianazza, “Porous medium type equations with measure data and potential estimates,” SIAM J. Math. Anal., 45(6), 3283-3330 (2013).
V. Bögelein, F. Duzaar, and U. Gianazza, “Sharp boundedness and continuity results for the singular porous medium equation,” Israel J. Math., 214, 259-314 (2016).
S. Bonafede and I. I. Skrypnik, “On Hölder continuity of solutions of doubly nonlinear parabolic equations with weight,” Ukr. Math. J., 51(7), 996-1012 (1999).
M. Bonforte, J. Dolbeanlt, M. Muratori, and B. Nazaret, “Weighted fast diffusion equations (Part I): Sharp asymptotic rates without symmetry breaking in Caffarelli–Kohn–Nirenberg inequalities,” Kin. Rel. Mod., 10, 33-59 (2017).
M. Bonforte, J. Dolbeanlt, M. Muratori, and B. Nazaret, “Weighted fast diffusion equations (Part II): Sharp asymptotic rates of convergence in relative error by entropy methods,” Kin. Rel. Mod., 10, 61-91 (2017).
M. Bonforte and N. Simonov, Quantitative a priori estimates for fast diffusion equations with Caffarelli–Kohn–Nirenberg weights. Harnack inequalities and Hölder continuity, arXiv: 1804.03537.2018.
K. O. Buryachenko and I. I. Skrypnik, “Riesz potentials and pointwise estimates of solutions to anisotropic porous medium equation,” Nonlin. Anal., 178, 56-85 (2019).
L. A. Caffarelli and C. L. Evans, “Continuity of the temperature in the two phase Stefan problem,” ARMA, 81, 199-220 (1983).
L. A. Caffarelli and A. Friedman, “Regularity of the free boundary of a fas flow in an n-dimensional porous medium,” Indiana Univ. J., 29, 361-391 (1980).
S. Chanillo and R. L. Wheeden, “Harnack’s inequality and mean-value inequalities for solution of degenerate elliptic equations,” Comm. Partial Diff. Equat., 11(10), 1111-1134 (1986).
S. Chanillo and R. L. Wheeden, “Weighted Poincaré and Sobolev enequalities and estimates for weighted Peano maximal functions,” Amer. J. Math., 107(5), 1191-1226 (1985).
V. Chiado Piat and F. Serra Cassano, “Relaxation of degenerate variational integrals,” Nonlin. Anal., 22(4), 409-424 (1994).
V. Chiado Piat and F. Serra Cassano, “Some remarks about the density of smooth function in weighted Sobolev space,” J. Convex Anal., 2, 135-142 (1994).
F. M. Chiarenza and M. Frasca, “A note on a weighted Sobolev inequality,” Proc Amer. Soc., 93(4), 703-704 (1985).
F. Chiarenza, E. Fabes, and N. Garofalo, “Harnack’s inequality for Schrödinger operators and the continuity of solutions,” Proc. Amer. Math. Soc., 98, 415-425 (1986).
F. M. Chiarenza and M. Frasca, “Boundedness for the solutions of a degenerate parabolic equations,” Appl. Anal., 17, 243-261 (1984).
F. M. Chiarenza and R. P. Separioni, “A Harnack inequality for degenerate parabolic equations,” Comm. Part. Diff. Equat., 9(8), 719-749 (1984).
F. M. Chiarenza and R. P. Separioni, “A Harnack inequality for degenerate parabolic equations,” Rend. Sem. Math. Univ. Padova, 73, 179-190 (1985).
F. M. Chiarenza and R. P. Separioni, “Degenerate parabolic equations and Harnack inequality,” Ann. Mat. Pura Appl. 139-162 (1984).
F. M. Chiarenza and R. P. Separioni, “Pointwise estimates for degenerate parabolic equations,” Appl. Anal., 23(4), 287-299 (1987).
A. Dall’Aglio, D. Giachetti, and I. Peral, “Results on parabolic equations related to some Caffarelli–Kohn– Nirenberg inequalities,” SIAM J. Math. Anal., 36(3), 691-716 (2004/2005).
E. De Giorgi, “Sulla differenziabilita e l’analiticita delle estremali degli integrali multipli regolary,” Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 3, 25-43 (1957).
E. Di Benedetto, Degenerate Parabolic Equations, Springer, New York, 1993.
E. Di Benedetto and A. Friedman, “Hölder estimates for nonlinear degenerate parabolic systems,” J. Reine Angew. Math., 357, 1-22 (1985).
G. Di Fazio, M. Stella Fanciullo, and P. Zamboni, “Harnack inequality and regularity for degenerate quasilinear elliptic equations,” Math. Zeitschr., 264(3), 679-695 (2010).
E. B. Fabes, C. E. Kening, and R. P. Serapioni, “The local regularity of solutions of degenerate elliptic equations,” Comm. Part. Diff. Equat., 7(1), 77-116 (1982).
J. C. Fernandes and B. Franchi, “Existence and properties of the Green function for a class of degenerate parabolic equations,” Rev. Mat. Iberoam., 12(2), 491-524 (1996).
J. C. Fernandes, “Mean value and Harnack inequalities for a certain class of degenerate parabolic equations,” Rev. Mat. Iberoam., 7(3), 247-286 (1991).
F. Ferrari, “Harnack inequality for two-weight subelliptic p-Laplace operator,” Math. Nachr., 279(8), 815-830 (2006).
J. Garcia Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam, 1985.
G. Grillo, M. Muratori, and M. M. Porzio, “Porous media equations with two weights: smoothing and decay properties of energy solutions via Poincaré inequalities.” Discr. Contin. Dyn. Syst., 33, 3599-3640 (2013).
C.E. Gutierrez, “Harnack’s inequality for degenerate Schrödinger operators.” Trans. Amer. Math. Soc., 312(1), 403-419 (1989).
C. Gutierrez and F. Nelson, “Bounds for the fundamental solution of degenerate parabolic equations,” Comm. Part. Diff. Equat., 13(5), 635-649 (1988).
C. E. Gutierrez and R. L. Wheeden, “Bounds for the fundamental solution of degenerate parabolic equations,” Comm. Part. Diff. Equat., 17(7), 1287-1307 (1992).
C. E. Gutierrez and R. L. Wheeden, “Harnack’s inequalities for degenerate parabolic equations,” Comm. Part. Diff. Equat., 16(4-5), 745-770 (1991).
C. E. Gutierrez and R. L. Wheeden, “Mean value and Harnack inequalities for degenerate parabolic equations,” Colloq. Math., 60/61(1), 157-194 (1990).
C. E. Gutierrez and R. L. Wheeden, “Sobolev interpolation inequalities with weights,” Trans. Amer. Math. Soc., 323, 263-281 (1991).
J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Clarendon Press, Oxford, 1993.
S. Kamin and P. Rosenau, “Nonlinear diffusion in a finite mass medium,” Comm. Pure Appl. Math., 35(1), 113-127 (1982).
S. Kamin and P. Rosenau, “Propagatio of thermal waves in an inhomogeneous medium,” Comm. Pure Appl. Math., 34(6), 831-852 (1981).
T. Kilpeläinen and J. Malý, “The Wiener test and potential estimates for quasilinear elliptic equations,” Acta Math., 172, 137-161 (1992).
K. Kurata, “Continuity and Harnack’s inequality for solutions of elliptic partial differential equations of second order,” Indiana Univ. Math. J., 43, 411-440 (1994).
D. Labutin, “Potential estimates for a class of fully nonlinear elliptic equations,” Duke Math. J., 111(1), 1-49 (2002).
O. A. Ladyzhenskaya and N. N. Ural’tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968.
O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, RI, 1968.
V. Liskevich and I. I. Skrypnik, “Harnack’s inequality and continuity of solutions to quasi-linear degenerate parabolic equations with coefficients from Kato-type classes,” J. Diff. Equat., 247(10), 2740-2777 (2009).
V. Liskevich and I. I. Skrypnik, “Pointwise estimates for solutions to the porous medium equation with measure as a forcing term,” Israel J. Math., 194, 259-275 (2013).
A. Mohamed, “Harnack’s inequalities for solutions of some degenerate elliptic equations,” Rev. Mat. Iberoam., 18, 325-354 (2002).
J. Moser, “A Harnack inequality for parabolic differential equations,” Comm. Pure Appl. Math., 17(1), 101-134 (1964).
J. Moser, “On Harnack’s theorem for elliptic differential equations,” Comm. Pure Appl. Math., 14(3), 577-591 (1961).
M. Muratori, Weighted Functional Inequalities and Nonlinear Diffusions of Porous Medium Type, Ph.D. thesis, Politec. di Milano and Univ. Paris, 2015.
J. Nash, “Continuity of solutions of parabolic and elliptic equations,” Amer. J. Math., 80, 931-954 (1958).
F. Paronetto, “Harnack’s inequalities for mixed type evolution equations,” J. Diff. Equat., 260(6), 5259- 5355 (2016).
F. Paronetto, “A time regularity result for forward-backward parabolic equations,” Boll. Union Math. Ital., 4(9), 69-77 (2011).
F. Paronetto, “Local boundednss for forvard- backward parabolic De Giorgi classes with coefficients depending on time,” Nonlin. Anal., 158, 168-198 (2017).
J. Serrin, “Local behaviour of solutions of quasilinear equations,” Acta Math., 111, 302-347 (1964).
I. I. Skrypnik, “Continuity of solutions to singular parabolic equations with coefficients from Kato-type classes,” Annali Mat. Pura Appl., 195(4), 1158-1176 (2016).
S. Sturm, “Pointwise estimates for porous medium type equations with low order terms and measure data,” Electron J. Diff. Equat., 215(101), 1-25 (2015).
M. Surnachev, “A Harnack inequality for weighted degenerate parabolic equations,” J. Diff. Equat., 248(8), 2092-2129 (2010).
M. Surnachev, “Regularity of solutions of parabolic equations with a double nonlinearity and a weight,” Trans. Moscow Math. Soc., 75, 259-280 (2014).
N. Trudinger, “Pointwise estimates and quasilinear parabolic equations,” Comm. Pure Appl. Math., 21(3), 205-226 (1968).
N. Trudinger and X.-J. Wang, “On the weak continuity of elliptic operators and applications to potential theory,” Amer. J. Math., 124(2), 369-410 (2002).
J. L. Vazquez, The Porous Medium Equation, Oxford Univ. Press, Oxford, 2007.
Y. Wang, P. Nin, and X. Cui, “Harnack estimates for a quasi-linear parabolic equations with a singular weight,” Nonlin. Anal., 74(17), 6265-6286 (2011).
Q. Zhang, “A Harnack’s inequality for the equation ∇(a∇u)+b∇u = 0 when |b| ∈ Kn+1,” Manuscr. Math., 89(1), 61-77 (1996).
Q. Zhang, “On a parabolic equation with a singular lower order term,” Trans. Amer. Math. Soc., 348, 2811-2844 (1996).
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 17, No. 1, pp. 116–144 January–March, 2020.
Rights and permissions
About this article
Cite this article
Zozulia, Y. Pointwise estimates of solutions to the weighted porous medium equation and the fast diffusion one via weighted Riesz potentials. J Math Sci 248, 233–254 (2020). https://doi.org/10.1007/s10958-020-04872-4
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10958-020-04872-4