Skip to main content

Advertisement

Log in

Lower Bounds for the Constants in Non-Uniform Estimates of the Rate of Convergence in the CLT

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We conduct a comparative analysis of the constants in the Nagaev–Bikelis and Bikelis–Petrov inequalities that establish non-uniform estimates of the rate of convergence in the central limit theorem for sums of independent random variables possessing finite absolute moments of order 2 + δ with δ ∈ [0, 1]. We provide lower bounds for the above constants and also for the constants in the structural improvements of Nagaev–Bikelis’ inequality. The lower bounds in Nagaev–Bikelis’ inequality and its structural improvements are given as a function of δ and a structural parameter s as well as uniform with respect to both δ and s. Lower bounds for the constants in Nagaev–Bikelis’ with δ < 1 and Bikelis–Petrov’s inequalities are presented for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bikelis, “Estimates of the remainder term in the central limit theorem,” Litovsk. Mat. Sb., 6, No. 3, 323–346 (1966).

    MathSciNet  Google Scholar 

  2. L. H. Y. Chen and Q. M. Shao, “A non-uniform Berry–Esseen bound via Stein’s method,” Probab. Theor. Relat. Fields, 120, 236–254 (2001).

    Article  MathSciNet  Google Scholar 

  3. G. P. Chistyakov, “On a problem of A. N.Kolmogorov,” J. Math. Sci., 68, No. 4, 604–625 (1994).

    Article  MathSciNet  Google Scholar 

  4. R. Gabdullin, V. Makarenko, and I. Shevtsova, “Esseen–Rozovskii type estimates for the rate of convergence in the Lindeberg theorem,” J. Math. Sci., 234, No. 6, 847–885 (2018).

    Article  MathSciNet  Google Scholar 

  5. S. V. Gavrilenko, “An improvement of the nonuniform estimates of convergence rate of distributions of Poisson random sums to the normal law,” Inform. Appl., 5, No. 1, 12–24 (2011).

    Google Scholar 

  6. M. E. Grigorieva and S. V. Popov, “On nonuniform convergence rate estimates in the central limit theorem,” Syst. Mean. Inform., 22, No. 1, 180–204 (2012).

    Google Scholar 

  7. V. Yu. Korolev and S. V. Popov, “Improvement of convergence rate estimates in the central limit theorem under weakened moment conditions,” Dokl. Math., 86, No. 1, 506–511 (2012).

    Article  MathSciNet  Google Scholar 

  8. R. Michel, “On the constant in the nonuniform version of the Berry–Esseen theorem,” Z. Wahrsch. Verw. Geb., 55, No. 1, 109–117 (1981).

    Article  MathSciNet  Google Scholar 

  9. Sh. A. Mirachmedov, “On the absolute constant in the nonuniform convergence rate estimate in the central limit theorem,” Izv. AN UzSSR, Ser. Fiz.-Mat. Nauk, 1984, No. 4, 26–30 (1984).

  10. S. V. Nagaev, ”Some limit theorems for large deviations,” Theor. Prob. Appl., 10, No. 2, 214–235 (1965).

    Article  MathSciNet  Google Scholar 

  11. K. Neammanee, “On the constant in the nonuniform version of the Berry–Esseen theorem,” Int. J. Math. Math. Sci., No. 12, 1951–1967 (2005).

    Article  MathSciNet  Google Scholar 

  12. K. Neammanee and P. Thongtha, “Improvement of the non-uniform version of Berry–Esseen inequality via Paditz–Siganov theorems,” J. Inequal. Pure Appl. Math., 8, No. 4, 1–20 (2007).

    MathSciNet  MATH  Google Scholar 

  13. Yu. S. Nefedova and I. G. Shevtsova, “On the accuracy of the normal approximation to distributions of Poisson random sums,” Inform. Appl., 5, No. 1, 39–45 (2011).

    Google Scholar 

  14. Yu. S. Nefedova and I. G. Shevtsova, “Structural improvement of nonuniform estimates for the rate of convergence in the central limit theorem with applications to Poisson random sums,” Dokl. Math., 84, No. 2, 675–680 (2011).

    Article  MathSciNet  Google Scholar 

  15. Yu. S. Nefedova and I. G. Shevtsova, “On non-uniform convergence rate estimates in the central limit theorem,” Theor. Prob. Appl., 57, No. 1, 28–59 (2013).

    Article  Google Scholar 

  16. L. V. Osipov, “Refinement of Lindeberg’s theorem,” Theor. Probab. Appl., 11, No. 2, 299–302 (1966).

    Article  Google Scholar 

  17. L. Paditz, ”Abschätzungen der Konvergenzgeschwindigkeit im zentralen Grenzwertsatz,” Wiss. Z. TU Dresden, No. 25, 1169–1177 (1976).

  18. L. Paditz, Über die Annäherung der Verteilungsfunktionen von Summen unabhängiger Zufallsgrößen gegen unbegrenzt teilbare Verteilungsfunktionen unter besonderer Beachtung der Verteilungsfunktion der standardisierten Normalverteilung, Dissertation A, Technische Universität Dresden, Dresden (1977).

  19. L. Paditz, “Abschätzungen der Konvergenzgeschwindigkeit zur Normalverteilung unter Voraussetzung einseitiger Momente,” Math. Nachr., No. 82, 131–156 (1978).

    Article  MathSciNet  Google Scholar 

  20. L. Paditz, “Über eine Fehlerabschätzung im zentralen Grenzwertsatz,” Wiss. Z. der TU Dresden, 28, No. 5, 1197–1200 (1979).

    MathSciNet  MATH  Google Scholar 

  21. L. Paditz and Sh. A. Mirachmedov, “Letter to Editor (A remark to the estimate of the absolute constant in non-uniform estimate of the rate of convergence in the CLT),” Izv. AN UzSSR, Ser. Fiz.-Mat. Nauk, No. 3, 80 (1986).

  22. L. Paditz, “On the analytical structure of the constant in the nonuniform version of the Esseen inequality,” Statistics (Berlin: Akademie-Verlag), 20, No. 3, 453–464 (1989).

  23. V. V. Petrov, “A limit theorem for sums of independent, nonidentically distributed random variables,” J. Sov. Math., 20, No. 3, 2232–2235 (1982).

    Article  MathSciNet  Google Scholar 

  24. I. Pinelis, “On the nonuniform Berry–Esseen bound,” arXiv:1301.2828 (2013).

  25. I. G. Shevtsova, “On the absolute constant in the Berry–Esseen inequality and its structural and non-uniform improvements,” Inform. Appl., 7, No. 1, 124–125 (2013).

    MathSciNet  Google Scholar 

  26. I. G. Shevtsova, Accuracy of the Normal Approximation: Methods of Estimation and New Results, Argamak-Media, Moscow (2016).

    Google Scholar 

  27. I. G. Shevtsova, “On the absolute constants in Nagaev–Bikelis-type inequalities,” in: I.Pinelis (ed.), Inequalities and Extremal Problems in Probability and Statistics, Elsevier, London (2017), pp. 47–102.

  28. P. Thongtha and K. Neammanee, “Refinement on the constants in the non-uniform version of the Berry–Esseen theorem,” Thai J. Math., 5, 1–13 (2007).

    MathSciNet  MATH  Google Scholar 

  29. W. Tysiak, Gleichmäßige und nicht-gleichmäßige Berry–Esseen Abschätzungen, Dissertation, Gesamthochschule Wuppertal, Wuppertal (1983).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Shevtsova.

Additional information

Proceedings of the XXXV International Seminar on Stability Problems for Stochastic Models, Perm, Russia, September 24–28, 2018. Part II.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevtsova, I.G. Lower Bounds for the Constants in Non-Uniform Estimates of the Rate of Convergence in the CLT. J Math Sci 248, 92–98 (2020). https://doi.org/10.1007/s10958-020-04858-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-020-04858-2

Navigation