Skip to main content
Log in

Integral Representation of the Fractional Stable Density

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

This article studies the properties of the characteristic function of fractional stable distribution expressed through the Mittag-Leffler function. It is shown that the existing integral expression for the Mittag-Leffler function is incorrect, and the corrected integral expression is given. New properties of the characteristic function of the fractional stable law are obtained that make it possible to perform the inverse Fourier transformation. As a result, the integral representations are obtained for the density and distribution function of the fractional stable law. Some properties of these representations are studied, and the results of numerical calculations for the probability density and distribution function are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.P. Agarwal, “A propos d’une note de M. Pierre Humbert,” C. R. Acad. Sci. Paris, 236, 2031–2032 (1953).

    MathSciNet  MATH  Google Scholar 

  2. V. E. Bening, V. Y. Korolev, T. A. Sukhorukova, G.G. Gusarov, V.V. Saenko, V. V. Uchaikin, and V. N. Kolokoltsov, “Fractionally stable distributions,” in: Stochastic Models of Structural Plasma Turbulence, V.Y. Korolev and N.N. Skvortsova (eds.), Brill Academic Publishers, Utrecht (2006), pp. 175–244.

    Google Scholar 

  3. J.M. Chambers, C. L. Mallows, and B.W. Stuck, “A method for simulating stable random variables,” J. Am. Stat. Assoc., 71, No. 354, 340–344 (1976).

    Article  MathSciNet  Google Scholar 

  4. M. M. Dzhrbashian, Integral Transfororms and Representation of the Functions in the Complex Domain, Nauka, Moscow (1966).

    Google Scholar 

  5. R. Gorenflo, A.A. Kilbas, F. Mainardi, and S.V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer, Berlin (2014).

    Book  Google Scholar 

  6. R. Gorenflo, J. Loutchko, and Y. Luchko, “Computation of the Mittag-Leffler function Eα,β(z) and its derivative,” Fract. Calc. Appl. Anal., 5, No. 4, 491–518 (2002).

    MathSciNet  MATH  Google Scholar 

  7. P. Humbert, “Quelques résultats rélatifs à la fonction de Mittag-Leffler,” C. R. Acad. Sci. Paris, 236, 1467–1468 (1953).

    MathSciNet  MATH  Google Scholar 

  8. P. Humbert and R.P. Agarwal, “Sur la fonction de Mittag-Leffler et quelques-unes de ses généralisations,” Bull. Sci. Math., II. Sér., 77, 180–185 (1953).

    MATH  Google Scholar 

  9. M. Kanter, “Stable densities under change of scale and total variation inequalities,” Ann. Prob., 3, No. 4, 697–707 (1975).

    Article  MathSciNet  Google Scholar 

  10. J. Klafter, A. Blumen, and M. F. Shlesinger, “Stochastic pathway to anomalous diffusion,” Phys.Rev. A, 35, No. 7, 3081–3085 (1987).

    Article  MathSciNet  Google Scholar 

  11. V. N. Kolokoltsov, V. Y. Korolev, and V.V. Uchaikin, “Fractional stable distributions,” J. Math. Sci., 105, No. 6, 2569–2576 (2001).

    Article  MathSciNet  Google Scholar 

  12. M. Kotulski, “Asymptotic distributions of continuous-time random walks: A probabilistic approach,” J. Stat. Phys., 81, No. 3–4, 777–792 (1995).

    Article  Google Scholar 

  13. R. Metzler and J. Klafter, “The random walk’s guide to anomalous diffusion: a fractional dynamics approach,” Phys. Rep., 339, No. 1, 1–77 (2000).

    Article  MathSciNet  Google Scholar 

  14. E. W. Montroll and G.H. Weiss, “Random Walks on Lattices. II,” J. Math. Phys. Q., 6, No. 2, 167 (1965).

    Article  MathSciNet  Google Scholar 

  15. J.P. Nolan, “Numerical calculation of stable densities and distribution functions,” Commun. Stat. Stoch. Models, 13, No. 4, 759–774 (1997).

    Article  MathSciNet  Google Scholar 

  16. A.P. Prudnikov, Yu.A. Brychkov, O. I. Marichev, and N.M. Queen, Integrals and Series. Vol.1 Elementary Functions (4th ed.), Taylor & Francis Ltd, London (1998).

    Google Scholar 

  17. H. Scher and M. Lax, “Stochastic transport in a disordered solid. I. Theory,” Phys. Rev. B, 7, No. 10, 4491–4502 (1973).

    Article  MathSciNet  Google Scholar 

  18. H. Scher and M. Lax, “Stochastic transport in a disordered solid. II. Impurity conduction,” Phys. Rev. B, 7, 4502–4519 (1973).

    Article  Google Scholar 

  19. V. V. Uchaikin, “Montroll–Weiss problem, fractional equations, and stable distributions,” Int. J. Theor. Phys., 39, No. 8, 2087–2105 (2000).

    Article  MathSciNet  Google Scholar 

  20. V.Yu. Zaburdaev, S. I. Denisov, and J. Klafter, “Lévy walks,” Rev. Mod. Phys., 87, No. 2, 483–530 (2015).

    Article  Google Scholar 

  21. V. M. Zolotarev, One-dimensional Stable Distributions, AMS, Providence (1986).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Saenko.

Additional information

Proceedings of the XXXV International Seminar on Stability Problems for Stochastic Models, Perm, Russia, September 24–28, 2018. Part II.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saenko, V.V. Integral Representation of the Fractional Stable Density. J Math Sci 248, 51–66 (2020). https://doi.org/10.1007/s10958-020-04855-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-020-04855-5

Navigation