We explain why nilpotent Lie algebras usually are characteristically nilpotent, i.e., do not admit ℤ-gradings.
Article PDF
References
J. H. Ancochea and R. Campoamor, “Characteristically nilpotent Lie algebras: a survey,” Extracta Math., 16, No. 2, 153–210 (2001).
E. M. Andreev and V. L. Popov, “Stationary subgroups of points of general position in the representation space of a semisimple Lie group,” Funct. Anal. Appl., 5, No. 4, 265–271 (1971).
R. Bryant and J. Groves, “Algebraic groups of automorphisms of nilpotent groups and Lie algebras,” J. London Math. Soc., 33, No. 2, 453–456 (1986).
D. Burde, “On a refinement of Ado’s theorem,” Arch. Math., 70, No. 2, 118–127 (1998).
D. Burde, B. Eick, and W. de Graaf, “Computing faithful representations for nilpotent Lie algebras,” J. Algebra, 322, No. 3, 602–612 (2009).
D. Burde and W. A. Moens, “Faithful Lie algebra modules and quotients of the universal enveloping algebra,” J. Algebra, 325, No. 1, 440–460 (2011).
R. Carles, “Variétés d’algèbres de Lie: point de vue global et rigidité,” These, Université de Poitiers (1984).
R. Carles and Y. Diakité, “Sur les variétés d’algèbres de Lie de dimension ≤ 7,” J. Algebra, 91, 53–63 (1984).
R. Carles, “Sur certaines classes d’algèbres de Lie rigides,” Math. Ann., 272, 477–488 (1985).
L. J. Corwin and F. P. Greenleaf, Representations of Nilpotent Lie Groups and Their Applications. Part I, Basic Theory and Examples, Cambridge Univ. Press (1990).
J. Dixmier and W. G. Lister, “Derivations of nilpotent Lie algebras,” Proc. Amer. Math. Soc., 8, 155–158 (1957).
D. B. Fuks, Cohomology of Infinite-Dimensional Lie Algebras, Consultants Bureau, New York (1986).
M. Gerstenhaber, “On the deformations of rings and algebras,” Ann. Math. (2), 79, No. 1, 59–103 (1964).
L. V. Goncharova, “The cohomologies of Lie algebras of formal vector fields on the line,” Funct. Anal. Appl., 7, No. 2, 91–97 (1973).
M.-P. Gong, “Classification of nilpotent Lie algebras of dimension 7 (over algebraically closed fields and Re),” PhD thesis, University of Waterloo (1998); available via http://etd.uwaterloo.ca/etd/mpgong1998.pdf/.
V. Gorbatsevich, “Computational experiments with nilpotent Lie algebra,” Mat. Zametki, 107, No. 1, 23–31 (2020).
K. Gröchenig and D. Rottensteiner, “Orthonormal bases in the orbit of square-integrable representations of nilpotent Lie groups,” J. Funct. Anal., 275, No. 12, 3338–3379 (2018).
M. Goze and J. M. Ancochea Bermudez, “On the varieties of nilpotent Lie algebras of dimension 7 and 8,” J. Pure Appl. Algebra, 77, No. 2, 131–140 (1992).
M. Goze and Yu. Khakimdjanov, Nilpotent Lie Algebras, Kluwer, Dordrecht (1996), p. 334.
A. A. Kirillov, “Unitary representations of nilpotent Lie groups,” Russian Math. Surveys, 17, No. 4, 53–104 (1962).
A. A. Kirillov and Yu. A. Neretin, “The variety An of n-dimensional Lie algebra structures,” in: V. M. Tikhomirov (ed.), Some Questions in Modern Analysis. In Memory of V. M. Alekseev, Lomonosov Moscow State University (1985); Amer. Math. Soc. Transl., 37, 21–30 (1987).
Yu. Yu. Kochetkov, “Deformations of the infinite-dimensional Lie algebra L3,” Funct. Anal. Appl., 40, No. 3, 228–233 (2006).
E. M. Luks, “A characteristically nilpotent Lie algebra can be a derived algebra,” Proc. Amer. Math. Soc., 56, 42–44 (1976).
E. M. Luks, “What is the typical nilpotent Lie algebra?”, in: R. E. Beck and B. Kolman (eds.), Computers in Nonassociative Rings and Algebras (1977), pp. 189–207.
W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory. Presentations of Groups in Terms of Generators and Relations, reprint of the 1976 second edition, Dover Publications, Mineola (2004).
G. Mazzola, “The algebraic and geometric classification of associative algebras of dimension five,” Manuscripta Math., 27, 81–101 (1979).
G. Mazzola, “Generic finite schemes and Hochschild cocycles,” Comment. Math. Helv., 55, 267–293 (1980).
A. I. Malcev, “On a class of homogeneous spaces,” Izv. Akad. Nauk SSSR. Ser. Mat., 13, 9–32 (1949).
D. V. Millionshchikov, “The variety of Lie algebras of maximal class,” in: Geometry, Topology, and Mathematical Physics. II. Collected Papers. Dedicated to Academician S. P. Novikov, Proc. Steklov Inst. Math., 266 (2009), pp. 177–194.
W. A. Moens, “Representing Lie algebras using approximations with nilpotent ideals,” J. Lie Theory, 26, No. 1, 169–179 (2016).
V. V. Morozov, “Classification of nilpotent Lie algebras of sixth order,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 4, 161–171 (1958).
Yu. A. Neretin, “An estimate of the number of parameters defining an n-dimensional algebra,” Math. USSR-Izv., 30, No. 2, 283–294 (1988).
Yu. A. Neretin, “A construction of finite-dimensional faithful representation of Lie algebra,” in: J. Bureš (ed.), Proceedings of the 22nd Winter School “Geometry and Physics,” Rend. Circ. Mat. Palermo, Ser. II, Suppl. No. 71 (2003), pp. 159–161.
G. I. Olshanskii, “On the duality theorem of Frobenius,” Funct. Anal. Appl., 3, No. 4, 295–302 (1969).
R. W. Richardson, “On the rigidity of semi-direct products of Lie algebras,” Pacific J. Math., 22, 339–344 (1967).
E. N. Safiullina, “Classification of nilpotent Lie algebras of order 7,” Ph.D. Thesis, Kazan State University (1966).
E. N. Safiullina, “On a classification of nilpotent Lie algebras of seventh order,” Kazan. Khimiko-Tekhnol. Inst, Manuscript deposited at VINITI, No. 1702–76 (1976).
C. Seeley, “7-Dimensional nilpotent Lie algebras,” Trans. Amer. Math. Soc., 335, No. 2, 479–496 (1993).
I. R. Shafarevich, “Deformations of commutative algebras of class 2,” Leningrad Math. J., 2, No. 6, 1335–1351 (1991).
K. A. Umlauf, “Über die Zusammensetzung der endlichen continuierlichen Transformationsgruppen, insbesondere der Gruppen von Range Null,” Thesis, University of Leipzig (1891), ss. 80; reprinted in: Nabu Press (2010).
M. Vergne, “Réductibilité de la variété des algèbres de Lie nilpotentes,” C. R. Acad. Sci. Paris Sér. A, 263, 4–6 (1966).
M. Vergne, “Cohomologie de algèbres de Lie nilpotentes,” Bull. Soc. Math. France, 98, 81–116 (1970).
A. L. Onishchik and E. B. Vinberg, Lie Groups and Algebraic Groups, Springer-Verlag, Berlin (1990).
Author information
Authors and Affiliations
Corresponding author
Additional information
Published in Zapiski Nauchnykh Seminarov POMI, Vol. 481, 2019, pp. 108–124.
Rights and permissions
About this article
Cite this article
Neretin, Y.A. A Remark on Nilpotent Lie Algebras that Do No Admit Gradings. J Math Sci 247, 711–722 (2020). https://doi.org/10.1007/s10958-020-04833-x
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10958-020-04833-x