Skip to main content
Log in

A Remark on Nilpotent Lie Algebras that Do No Admit Gradings

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We explain why nilpotent Lie algebras usually are characteristically nilpotent, i.e., do not admit ℤ-gradings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Ancochea and R. Campoamor, “Characteristically nilpotent Lie algebras: a survey,” Extracta Math., 16, No. 2, 153–210 (2001).

    MathSciNet  MATH  Google Scholar 

  2. E. M. Andreev and V. L. Popov, “Stationary subgroups of points of general position in the representation space of a semisimple Lie group,” Funct. Anal. Appl., 5, No. 4, 265–271 (1971).

    Article  MathSciNet  Google Scholar 

  3. R. Bryant and J. Groves, “Algebraic groups of automorphisms of nilpotent groups and Lie algebras,” J. London Math. Soc., 33, No. 2, 453–456 (1986).

    Article  MathSciNet  Google Scholar 

  4. D. Burde, “On a refinement of Ado’s theorem,” Arch. Math., 70, No. 2, 118–127 (1998).

    Article  MathSciNet  Google Scholar 

  5. D. Burde, B. Eick, and W. de Graaf, “Computing faithful representations for nilpotent Lie algebras,” J. Algebra, 322, No. 3, 602–612 (2009).

    Article  MathSciNet  Google Scholar 

  6. D. Burde and W. A. Moens, “Faithful Lie algebra modules and quotients of the universal enveloping algebra,” J. Algebra, 325, No. 1, 440–460 (2011).

    Article  MathSciNet  Google Scholar 

  7. R. Carles, “Variétés d’algèbres de Lie: point de vue global et rigidité,” These, Université de Poitiers (1984).

  8. R. Carles and Y. Diakité, “Sur les variétés d’algèbres de Lie de dimension ≤ 7,” J. Algebra, 91, 53–63 (1984).

  9. R. Carles, “Sur certaines classes d’algèbres de Lie rigides,” Math. Ann., 272, 477–488 (1985).

    Article  MathSciNet  Google Scholar 

  10. L. J. Corwin and F. P. Greenleaf, Representations of Nilpotent Lie Groups and Their Applications. Part I, Basic Theory and Examples, Cambridge Univ. Press (1990).

  11. J. Dixmier and W. G. Lister, “Derivations of nilpotent Lie algebras,” Proc. Amer. Math. Soc., 8, 155–158 (1957).

    Article  MathSciNet  Google Scholar 

  12. D. B. Fuks, Cohomology of Infinite-Dimensional Lie Algebras, Consultants Bureau, New York (1986).

    Book  Google Scholar 

  13. M. Gerstenhaber, “On the deformations of rings and algebras,” Ann. Math. (2), 79, No. 1, 59–103 (1964).

  14. L. V. Goncharova, “The cohomologies of Lie algebras of formal vector fields on the line,” Funct. Anal. Appl., 7, No. 2, 91–97 (1973).

    Article  Google Scholar 

  15. M.-P. Gong, “Classification of nilpotent Lie algebras of dimension 7 (over algebraically closed fields and Re),” PhD thesis, University of Waterloo (1998); available via http://etd.uwaterloo.ca/etd/mpgong1998.pdf/.

  16. V. Gorbatsevich, “Computational experiments with nilpotent Lie algebra,” Mat. Zametki, 107, No. 1, 23–31 (2020).

    Article  MathSciNet  Google Scholar 

  17. K. Gröchenig and D. Rottensteiner, “Orthonormal bases in the orbit of square-integrable representations of nilpotent Lie groups,” J. Funct. Anal., 275, No. 12, 3338–3379 (2018).

  18. M. Goze and J. M. Ancochea Bermudez, “On the varieties of nilpotent Lie algebras of dimension 7 and 8,” J. Pure Appl. Algebra, 77, No. 2, 131–140 (1992).

    Article  MathSciNet  Google Scholar 

  19. M. Goze and Yu. Khakimdjanov, Nilpotent Lie Algebras, Kluwer, Dordrecht (1996), p. 334.

    Book  Google Scholar 

  20. A. A. Kirillov, “Unitary representations of nilpotent Lie groups,” Russian Math. Surveys, 17, No. 4, 53–104 (1962).

    Article  MathSciNet  Google Scholar 

  21. A. A. Kirillov and Yu. A. Neretin, “The variety An of n-dimensional Lie algebra structures,” in: V. M. Tikhomirov (ed.), Some Questions in Modern Analysis. In Memory of V. M. Alekseev, Lomonosov Moscow State University (1985); Amer. Math. Soc. Transl., 37, 21–30 (1987).

  22. Yu. Yu. Kochetkov, “Deformations of the infinite-dimensional Lie algebra L3,” Funct. Anal. Appl., 40, No. 3, 228–233 (2006).

    Article  MathSciNet  Google Scholar 

  23. E. M. Luks, “A characteristically nilpotent Lie algebra can be a derived algebra,” Proc. Amer. Math. Soc., 56, 42–44 (1976).

    Article  MathSciNet  Google Scholar 

  24. E. M. Luks, “What is the typical nilpotent Lie algebra?”, in: R. E. Beck and B. Kolman (eds.), Computers in Nonassociative Rings and Algebras (1977), pp. 189–207.

  25. W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory. Presentations of Groups in Terms of Generators and Relations, reprint of the 1976 second edition, Dover Publications, Mineola (2004).

  26. G. Mazzola, “The algebraic and geometric classification of associative algebras of dimension five,” Manuscripta Math., 27, 81–101 (1979).

    Article  MathSciNet  Google Scholar 

  27. G. Mazzola, “Generic finite schemes and Hochschild cocycles,” Comment. Math. Helv., 55, 267–293 (1980).

    Article  MathSciNet  Google Scholar 

  28. A. I. Malcev, “On a class of homogeneous spaces,” Izv. Akad. Nauk SSSR. Ser. Mat., 13, 9–32 (1949).

    MathSciNet  Google Scholar 

  29. D. V. Millionshchikov, “The variety of Lie algebras of maximal class,” in: Geometry, Topology, and Mathematical Physics. II. Collected Papers. Dedicated to Academician S. P. Novikov, Proc. Steklov Inst. Math., 266 (2009), pp. 177–194.

  30. W. A. Moens, “Representing Lie algebras using approximations with nilpotent ideals,” J. Lie Theory, 26, No. 1, 169–179 (2016).

    MathSciNet  MATH  Google Scholar 

  31. V. V. Morozov, “Classification of nilpotent Lie algebras of sixth order,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 4, 161–171 (1958).

  32. Yu. A. Neretin, “An estimate of the number of parameters defining an n-dimensional algebra,” Math. USSR-Izv., 30, No. 2, 283–294 (1988).

    Article  MathSciNet  Google Scholar 

  33. Yu. A. Neretin, “A construction of finite-dimensional faithful representation of Lie algebra,” in: J. Bureš (ed.), Proceedings of the 22nd Winter School “Geometry and Physics,” Rend. Circ. Mat. Palermo, Ser. II, Suppl. No. 71 (2003), pp. 159–161.

  34. G. I. Olshanskii, “On the duality theorem of Frobenius,” Funct. Anal. Appl., 3, No. 4, 295–302 (1969).

    Article  Google Scholar 

  35. R. W. Richardson, “On the rigidity of semi-direct products of Lie algebras,” Pacific J. Math., 22, 339–344 (1967).

    Article  MathSciNet  Google Scholar 

  36. E. N. Safiullina, “Classification of nilpotent Lie algebras of order 7,” Ph.D. Thesis, Kazan State University (1966).

  37. E. N. Safiullina, “On a classification of nilpotent Lie algebras of seventh order,” Kazan. Khimiko-Tekhnol. Inst, Manuscript deposited at VINITI, No. 1702–76 (1976).

  38. C. Seeley, “7-Dimensional nilpotent Lie algebras,” Trans. Amer. Math. Soc., 335, No. 2, 479–496 (1993).

    MathSciNet  MATH  Google Scholar 

  39. I. R. Shafarevich, “Deformations of commutative algebras of class 2,” Leningrad Math. J., 2, No. 6, 1335–1351 (1991).

    MathSciNet  MATH  Google Scholar 

  40. K. A. Umlauf, “Über die Zusammensetzung der endlichen continuierlichen Transformationsgruppen, insbesondere der Gruppen von Range Null,” Thesis, University of Leipzig (1891), ss. 80; reprinted in: Nabu Press (2010).

  41. M. Vergne, “Réductibilité de la variété des algèbres de Lie nilpotentes,” C. R. Acad. Sci. Paris Sér. A, 263, 4–6 (1966).

  42. M. Vergne, “Cohomologie de algèbres de Lie nilpotentes,” Bull. Soc. Math. France, 98, 81–116 (1970).

    Article  MathSciNet  Google Scholar 

  43. A. L. Onishchik and E. B. Vinberg, Lie Groups and Algebraic Groups, Springer-Verlag, Berlin (1990).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Neretin.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 481, 2019, pp. 108–124.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neretin, Y.A. A Remark on Nilpotent Lie Algebras that Do No Admit Gradings. J Math Sci 247, 711–722 (2020). https://doi.org/10.1007/s10958-020-04833-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-020-04833-x

Navigation