Skip to main content
Log in

On Mixture Representations for the Generalized Linnik Distribution and Their Applications in Limit Theorems

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We present new mixture representations for the generalized Linnik distribution in terms of normal, Laplace, and generalized Mittag–Leffler laws. In particular, we prove that the generalized Linnik distribution is a normal scale mixture with the generalized Mittag–Leffler mixing distribution. Based on these representations, we prove some limit theorems for a wide class of statistics constructed from samples with random sized including, e.g., random sums of independent random variables with finite variances, in which the generalized Linnik distribution plays the role of the limit law. Thus we demonstrate that the scheme of geometric (or, in general, negative binomial) summation is by far not the only asymptotic setting (even for sums of independent random variables) in which the generalized Linnik law appears as the limit distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. N. Anderson and B. C. Arnold, “Linnik distributions and processes,” J. Appl. Prob., 30, 330–340 (1993).

    Article  MathSciNet  Google Scholar 

  2. L. Baringhaus and R. Grubel, “On a class of characterization problems for random convex combinations,” Ann. Inst. Stat. Math., 49, 555–567 (1997).

    Article  MathSciNet  Google Scholar 

  3. V. Bening and V. Korolev, Generalized Poisson Models and Their Applications in Insurance and Finance, VSP, Utrecht (2002).

    Book  Google Scholar 

  4. V. E. Bening and V. Yu. Korolev, “On an application of the Student distribution in the theory of probability and mathematical statistics,” Theor. Prob. Appl., 49, No. 3, 377–391 (2005).

    Article  Google Scholar 

  5. J. Bunge, “Compositions semigroups and random stability,” Ann. Probab., 24, 1476–1489 (1996).

    Article  MathSciNet  Google Scholar 

  6. L. Devroye, “A note on Linnik’s distribution,” Stat. Probab. Lett., 9, 305–306 (1990).

    Article  MathSciNet  Google Scholar 

  7. L. J. Gleser, “The gamma distribution as a mixture of exponential distributions,” Am. Stat., 43, 115–117 (1989).

    MathSciNet  Google Scholar 

  8. B. V. Gnedenko and V. Yu. Korolev, Random Summation: Limit Theorems and Applications, CRC Press, Boca Raton (1996).

    MATH  Google Scholar 

  9. R. Gorenflo and F. Mainardi, “Continuous time random walk, Mittag–Leffler waiting time and fractional diffusion: mathematical aspects,” in: Anomalous Transport: Foundations and Applications, Chap. 4, Klages R., G. Radons, and I. M. Sokolov (eds.), Wiley-VCH, Weinheim, Germany (2008), pp. 93–127. (available at: http://arxiv.org/abs/0705.0797.)

  10. K. Jayakumar, K. Kalyanaraman, and R. N. Pillai, “α-Laplace processes,” Math. Comput. Model., 22, 109–116 (1995).

    Article  Google Scholar 

  11. K. K. Jose, P. Uma, V. S. Lekshmi, and H. J. Haubold, “Generalized Mittag–Leffler distributions and processes for applications in astrophysics and time series modeling,” Astrophys. Space Sci. Proc., No. 202559, 79–92 (2010).

  12. R. Gorenflo, A. A. Kilbas, F. Mainardi, and S. V. Rogosin, Mittag–Leffler Functions, Related Topics and Applications, Springer, New York (2014).

    Book  Google Scholar 

  13. L. B. Klebanov, G. M. Maniya, and I. M. Melamed, “A problem of Zolotarev and analogs of infinite divisible and stable distributions in a scheme for summing a random number of random variables,” Theor. Prob. Appl., 29, 791–794 (1985).

    Article  Google Scholar 

  14. L. B. Klebanov and S. T. Rachev, “Sums of a random number of random variables and their approximations with ε-accompanying infinitely divisible laws,” Serdica, 22, 471–498 (1996).

    MathSciNet  MATH  Google Scholar 

  15. V. Yu. Korolev, “Convergence of random sequences with independent random indexes. I,” Theor. Probab. Appl., 39, No. 2, 313–333 (1994).

    MATH  Google Scholar 

  16. V. Yu. Korolev, “Convergence of random sequences with independent random indexes. II,” Theor. Probab. Appl., 40, No. 4, 770–772 (1995).

    Article  Google Scholar 

  17. V. Yu. Korolev and A. I. Zeifman, “Convergence of statistics constructed from samples with random sizes to the Linnik and Mittag–Leffler distributions and their generalizations,” J. Korean Stat. Soc., 46, No. 2, 161–181 (2017). (Also available on arXiv:1602.02480v1 [math.PR].)

  18. V. Yu. Korolev and A. I. Zeifman, “A note on mixture representations for the Linnik and Mittag–Leffler distributions and their applications,” J. Math. Sci., 218, No. 3, 314–327 (2017).

    Article  MathSciNet  Google Scholar 

  19. V. Yu. Korolev, “Analogs of Gleser’s theorem for negative binomial and generalized gamma distributions and some their applications,” Inform. Appl., 11, No. 3, 2–17 (2017).

    Google Scholar 

  20. V. Yu. Korolev, A. K. Gorshenin, S. K. Gulev, K. P. Belyaev, and A. A. Grusho, “Statistical analysis of precipitation events,” in: AIP Conference Proceedings, 1863, No. 090011 (2017). (Available on arXiv:1705.11055 [math.PR].)

  21. V. Yu. Korolev and A. K. Gorshenin, “The probability distribution of extreme precipitation,” Dokl. Earth Sci., 477, No. 2, 1461–1466 (2017).

    Article  MathSciNet  Google Scholar 

  22. S. Kotz, I. V. Ostrovskii, and A. Hayfavi, “Analytic and asymptotic properties of Linnik’s probability densities, I,” J. Math. Anal. Appl., 193, 353–371 (1995).

    Article  MathSciNet  Google Scholar 

  23. S. Kotz, I. V. Ostrovskii, and A. Hayfavi, “Analytic and asymptotic properties of Linnik’s probability densities, II,” J. Math. Anal. Appl., 193, 497–521 (1995).

    Article  MathSciNet  Google Scholar 

  24. S. Kotz and I. V. Ostrovskii, “A mixture representation of the Linnik distribution,” Stat. Prob. Lett., 26, 61–64 (1996).

    Article  MathSciNet  Google Scholar 

  25. S. Kotz, T. J. Kozubowski, and K. Podgorski, The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering, and Finance, Birkhauser, Boston (2001).

    Book  Google Scholar 

  26. T. J. Kozubowski, “Mixture representation of Linnik distribution revisited,” Stat. Prob. Lett., 38, 157–160 (1998).

    Article  MathSciNet  Google Scholar 

  27. T. J. Kozubowski, “Exponential mixture representation of geometric stable distributions,” Ann. Inst. Stat. Math., 52, No. 2, 231–238 (1999).

    Article  MathSciNet  Google Scholar 

  28. R. G. Laha, “On a class of unimodal distributions,” Proc. Am. Math. Soc., 12, 181–184 (1961).

    Article  MathSciNet  Google Scholar 

  29. G. D. Lin, “A note on the Linnik distributions,” J. Math. Anal. Appl., 217, 701–706 (1998).

    Article  MathSciNet  Google Scholar 

  30. S. C. Lim and L. P. Teo, “Analytic and asymptotic properties of multivariate generalized Linnik’s probability densities,” arXiv:0903.5344v1 [math.PR] (2009).

  31. Yu. V. Linnik, “Linear forms and statistical criteria, I, II,” Select. Trans. Math. Stat. Probab., 3, 41–90 (1963)

    Google Scholar 

  32. A. M. Mathai and H. J. Haubold, “Matrix-variate statistical distributions and fractional calculus,” Fract. Cal. Appl. An. Int. J. Theor. Appl., 14, No. 1, 138–155 (2011).

    MathSciNet  MATH  Google Scholar 

  33. S. Mittnik and S. T. Rachev, “Modeling asset returns with alternative stable distributions,” Econ. Rev., 12, 261–330 (1993).

    Article  MathSciNet  Google Scholar 

  34. A. G. Pakes, “Mixture representations for symmetric generalized Linnik laws,” Stat. Probab. Let., 37, 213–221 (1998).

    Article  MathSciNet  Google Scholar 

  35. R. N. Pillai, “Semi-α-Laplace distributions,” Commun. Stat. Theor. Meth, 14, 991–1000 (1985).

    Article  MathSciNet  Google Scholar 

  36. E. W. Stacy, “A generalization of the gamma distribution,” An. Math. Stat., 33, 1187–1192 (1962).

    Article  MathSciNet  Google Scholar 

  37. H. Teicher, “Identifiability of mixtures,” An. Math. Stat., 32, 244–248 (1961).

    Article  MathSciNet  Google Scholar 

  38. K. Weron and M. Kotulski, “On the Cole-Cole relaxation function and related Mittag–Leffler distributions,” Physica A, 232, 180–188 (1996).

    Article  Google Scholar 

  39. V. M. Zolotarev, One-Dimensional Stable Distributions. Translation of Mathematical Monographs, Vol. 65., American Mathematical Society, Providence (1986).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Korolev.

Additional information

Proceedings of the XXXV International Seminar on Stability Problems for Stochastic Models, Perm, Russia, September 24–28, 2018. Part I.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korolev, V., Gorshenin, A. & Zeifman, A. On Mixture Representations for the Generalized Linnik Distribution and Their Applications in Limit Theorems. J Math Sci 246, 503–518 (2020). https://doi.org/10.1007/s10958-020-04755-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-020-04755-8

Navigation