Skip to main content
Log in

On the HÖlder property of mappings in domains and on boundaries

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We study homeomorphisms and mappings with branching in domains of the Euclidean space. We establish pointwise HÖlder and Lipschitz properties of mappings whose characteristics satisfy a Dini-type condition or whose mean values over infinitesimal balls are finite at the corresponding points. Moreover, we find conditions on the complex coefficients of the Beltrami equations in the unit disk under which their homeomorphic solutions are HÖlder-continuous on the boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.Ya. Gutlyanskiĭ and A. Golberg, “On Lipschitz continuity of quasiconformal mappings in space,” J. Anal. Math., 109, 233–251 (2009).

  2. B. Bojarski, V. Gutlyanskii, O. Martio and V. Ryazanov, Infinitesimal Geometry of Quasiconformal and Bi-Lipschitz Mappings in the Plane, EMS Tracts in Mathematics 19, Eur. Math. Soc., ZÜrich, 2013.

  3. G.D. Suvorov, Generalized Principle of Length and Area in the Theory of Mappings [in Russian], Naukova Dumka, Kiev, 1985.

    Google Scholar 

  4. R.R. Salimov, “On the Lipschitz property of a class of mappings,” Math. Notes, 94, Nos. 3–4, 559–566 (2013).

    Article  MathSciNet  Google Scholar 

  5. R.R. Salimov, “Lower bounds of a p−modulus and mappings of the Sobolev class,” St. Petersburg Math. J., 26, No. 6, 965–984 (2015).

    Article  MathSciNet  Google Scholar 

  6. J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Springer, Berlin, 1971.

    Book  Google Scholar 

  7. O. Martio, V. Ryazanov, U. Srebro and E. Yakubov, Moduli in Modern Mapping Theory, Springer Monographs in Mathematics, Springer, New York, 2009.

    MATH  Google Scholar 

  8. V. Ryazanov, U. Srebro and E. Yakubov, “On ring solutions of Beltrami equations,” J. Anal. Math., 96, 117–150 (2005).

    Article  MathSciNet  Google Scholar 

  9. V.I. Ryazanov and E.A. Sevost’yanov, “Equicontinuous classes of ring Q homeomorpoushisms,” Siber. Math. J., 48, No. 6, 1093–1105 (2007).

    Article  Google Scholar 

  10. V. Ryazanov and E. Sevostyanov, “Toward the theory of ring Q-homeomorphisms,” Israel J. Math., 168, 101–118 (2008).

    Article  MathSciNet  Google Scholar 

  11. D.A. Kovtonyuk, R.R. Salimov, E.A. Sevost’yanov, To the Theory of Mappings of Sobolev and Orlicz- Sobolev Classes [in Russian] (ed. V.I. Ryazanov), Naukova Dumka, Kiev, 2013.

  12. D.A. Kovtonyuk, V.I. Ryazanov, R.R. Salimov and E.A. Sevost’yanov, “To the theory of Orlicz–Sobolev classes,” St. Petersburg Math. J., 25, No. 6, 929–963 (2014).

    Article  MathSciNet  Google Scholar 

  13. S. Saks, Theory of the Integral, Dover, New York, 1964.

    MATH  Google Scholar 

  14. E.A. Sevost’yanov, Study of Spatial Mappings by the Geometric Method [in Russian], Naukova Dumka, Kiev, 2014.

    Google Scholar 

  15. B. Bojarski, V. Gutlyanskii and V. Ryazanov, “On the Beltrami equations with two characteristics,” Complex Var. Elliptic Equ., 54, No. 10, 935–950 (2009).

    Article  MathSciNet  Google Scholar 

  16. B. Bojarski, V. Gutlyanskii and V. Ryazanov, “On existence and representation of solutions for general degenerate Beltrami equations,” Complex Var. Elliptic Equ., 59, No. 1, 67–75 (2014).

    Article  MathSciNet  Google Scholar 

  17. V. Gutlyanskii, V. Ryazanov and E. Yakubov, “The Beltrami equations and prime ends,” J. Math. Sci., 210, No. 1, 22–51 (2015).

    Article  MathSciNet  Google Scholar 

  18. D.A. Kovtonyuk, I.V. Petkov, V.I. Ryazanov and R.R. Salimov, “Boundary behavior and the Dirichlet problem for the Beltrami equations,” St. Petersburg Math. J., 25), No. 4, 587–603 (2014).

    Article  MathSciNet  Google Scholar 

  19. V. Ryazanov, U. Srebro and E. Yakubov, “On strong solutions of the Beltrami equations,” Complex Var. Elliptic Equ., 55, Nos. 1–3, 219–236 (2010).

    Article  MathSciNet  Google Scholar 

  20. A.A. Ignat’ev and V.I. Ryazanov, “Finite mean oscillation in the theory of mappings,” Ukr. Math. Bull., 2, No. 3, 403–424 (2005).

    MathSciNet  Google Scholar 

  21. O. Martio, V. Ryazanov and M. Vuorinen, “BMO and injectivity of space quasiregular mappings,” Math. Nachr., 205, 149–161 (1999).

    Article  MathSciNet  Google Scholar 

  22. V. Ryazanov, U. Srebro and E. Yakubov, “Plane mappings with dilatation dominated by functions of bounded mean oscillation,” Siber. Adv. Math., 11, No. 2, 94–130 (2001).

    MathSciNet  MATH  Google Scholar 

  23. V.I. Ryazanov and R.R. Salimov, “Weakly flat spaces and boundaries in the theory of mappings,” Ukr. Math. Bull., 4, No. 2, 199–234 (2007).

    MathSciNet  Google Scholar 

  24. V. Ryazanov, U. Srebro and E. Yakubov, “Finite mean oscillation and the Beltrami equation,” Israel J. Math., 153, 247–266 (2006).

    Article  MathSciNet  Google Scholar 

  25. V. Ryazanov, U. Srebro and E. Yakubov, “On integral conditions in the mapping theory,” J. Math. Sci., 173, No. 4, 397–407 (2011).

    Article  MathSciNet  Google Scholar 

  26. E.S. Afanas’eva, V.I. Ryazanov and R.R. Salimov, “On mappings of the Orlicz–Sobolev classes on Riemann manifolds,” J. Math. Sci., 181, No. 1, 1–17 (2012).

    Article  MathSciNet  Google Scholar 

  27. V. Ryazanov, U. Srebro and E. Yakubov, “Integral conditions in the theory of the Beltrami equations,” Complex Var. Elliptic Equ., 57, No. 12, 1247–1270 (2012).

    Article  MathSciNet  Google Scholar 

  28. M.A. Krasnosel’skii and Ya.B. Rutickii, Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961.

  29. E.A. Sevost’yanov, “On the normality of families of spatial mappings with branching,” Ukr. Math. J., 60, No. 10, 1618–1332 (2008).

    Article  Google Scholar 

  30. V. Gutlyanskii, V. Ryazanov and A. Yefimushkin, “On the boundary-value problems for quasiconformal functions in the plane,” J. Math. Sci., 214, No. 2, 200–219 (2016).

    Article  MathSciNet  Google Scholar 

  31. V.Ya. Gutlyanskii, V.I. Ryazanov, E. Yakubov and A.S. Yefimushkin, “On boundary-value problems in domains without (A)-condition,” Dopov. Nac. acad. nauk Ukr., No. 3, 17–24 (2019).

    Article  Google Scholar 

  32. A. Efimushkin and V. Ryazanov, “On the Riemann–Hilbert problem for the Beltrami equations in quasidisks,” J. Math. Sci., 211, No. 5, 646–659 (2015).

    Article  MathSciNet  Google Scholar 

  33. A. Efimushkin and V. Ryazanov, “On the Riemann–Hilbert problem for the Beltrami equations,” Contemp. Math., 667, 299–316 (2016).

    Article  MathSciNet  Google Scholar 

  34. A. Yefimushkin, “On Neumann and Poincar´e problems in A-harmonic analysis,” Adv. Analysis, 1, No. 2, 114–120 (2016).

    Article  MathSciNet  Google Scholar 

  35. V. Gutlyanskii, V. Ryazanov, U. Srebro and E. Yakubov, The Beltrami Equation. A Geometric Approach, Developments in Mathematics 26, Springer, New York, 2012.

  36. T. Lomako, R. Salimov, E. Sevostyanov, “On equicontinuity of solutions to the Beltrami equations,” Ann. Univ. Bucharest, Ser. Math., 1(LIX), No. 2, 263–274 (2010).

  37. D.A. Kovtonyuk, I.V. Petkov and V.I. Ryazanov, “The Beltrami equations and lower Q-homeomorphisms,” Trudy IPMM NAN Ukr., 21, 114–117 (2010).

    MathSciNet  MATH  Google Scholar 

  38. V. Ryazanov, R. Salimov, U. Srebro and E. Yakubov, “On boundary-value problems for the Beltrami equations,” Contemp. Math., 591, 211–242 (2013).

    Article  MathSciNet  Google Scholar 

  39. H. Federer, Geometric Measure Theory, Springer, Berlin, 1996.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir I. Ryazanov.

Additional information

Dedicated to the 100th anniversary of the birthday of Georgy Dmitrievich Suvorov

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 16, No. 3, pp. 383–402 July–September, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryazanov, V.I., Salimov, R.R. & Sevost’yanov, E.A. On the HÖlder property of mappings in domains and on boundaries. J Math Sci 246, 60–74 (2020). https://doi.org/10.1007/s10958-020-04723-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-020-04723-2

Keywords

Navigation