Skip to main content
Log in

Equivalence of Paths in Galilean Geometry

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we present an explicit description of finite transcendence bases in the differential field of differential rational functions that are invariant under the action of the Galilean transformation group in a real finite-dimensional space. Necessary and sufficient conditions of the equivalence of paths in the n-dimensional Galilean space are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. S. Aleksandrov, A Course of Analytic Geometry and Linear Algebra [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  2. Yu. A. Aminov, Differential Geometry and Topology [in Russia], Nauka, Moscow (1987).

    Google Scholar 

  3. R. G. Aripov and D. Khadzhiev, “The complete system of global differential and integral invariants of a curve in Euclidean geometry,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 7, 3–16 (2007).

  4. W. Blaschke, Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie, J. Springer, Berlin (1921–1929).

    Book  Google Scholar 

  5. E. Cartan, La Théorie des Groupes Finis et Continus et la Géométrie Différentielle Traitées par la Méthode du Repère Mobile, Gauthiers-Villars, Paris (1937).

    MATH  Google Scholar 

  6. E. Cartan, Selected Papers [Russian translation], MCCME, Moscow (1998).

    Google Scholar 

  7. V. I. Chilin and K. K. Muminov, “A complete system of differential invariants of curves in pseudo-Euclidean spaces,” Dinam. Sist., 31, No. 3, 135–149 (2013).

    MATH  Google Scholar 

  8. J. Dieudonné and J. B. Carrell, Invariant Theory, Academic Press, New York–London (1971).

    MATH  Google Scholar 

  9. D. Hilbert, Selected Papers. Invariant Theory. Number Theory. Algebra. Geometry. Foundations of Mathematics [Russian translation], Faktorial, Moscow (1998).

    Google Scholar 

  10. I. Kaplansky, An Introduction to Differential Algebra, Hermann, Paris (1957).

    MATH  Google Scholar 

  11. D. Khadzhiev, Applications of Invariant Theory to Differential Geometry of Curves [in Russian], FAN, Tashkent (1988).

    MATH  Google Scholar 

  12. D. Khadzhiev and O. Peksen, “The complete system of global integral and differential invariants for equiaffine curves,” Differ. Geom. Appl., 20, 167–175 (2004).

    Article  Google Scholar 

  13. E. R. Kolchin, Differential Algebra and Algebraic Groups, Academic Press, New York–London (1973).

    MATH  Google Scholar 

  14. H. Kraft, Geometrische Methoden in der Invariantentheorie, Vieweg, Braunschweig Wiesbaden (1985).

    Book  Google Scholar 

  15. D. Mumford, Geometric Invariant Theory, Springer-Verlag, Berlin (1965).

    Book  Google Scholar 

  16. D. Mumford and J. Fogarty, Geometric Invariant Theory, Springer-Verlag, Berlin (1982).

    Book  Google Scholar 

  17. K. K. Muminov, “Equivalence of paths under the action of the symplectic group,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 7, 27–38 (2002).

  18. K. K. Muminov and V. I. Chilin, Equivalence of Curves in Finite-Dimensional Spaces, Lambert Academic Publishing (2015).

  19. M. Nagata, On the Fourteenth Problem of Hilbert, Lect. Tata Inst. Fundam. Res., Bombay (1963).

    MATH  Google Scholar 

  20. J. F. Pommaret, Differential Galois Theory, Gordon and Breach, New York (1983).

    MATH  Google Scholar 

  21. B. A. Rosenfeld, Non-Eucludean Spaces [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  22. P. A. Shirokov and A. P. Shirokov, Affine Differential Geometry [in Russian], Fizmatlit, Moscow (1959).

    MATH  Google Scholar 

  23. E. B. Vinberg and V. L. Popov, “Invariant theory,” in: Itogi Nauki Tekhn. Sovrem. Probl. Mat. Fundam. Napr., 55, VINITI, Moscow (1989), pp. 137–309.

  24. H. Weyl, Selected Papers [Russian translation], Nauka, Moscow (1984).

    Google Scholar 

  25. H. Weyl, The Classical Groups. Their Invariants and Representations, Princeton Univ. Press (1997).

  26. I. M. Yaglom, “Quadratic and skew-symmetric bilinear forms in real symplectic spaces,” Tr. Semin. Vector. Tenzor. Anal., 8, 119–138 (1950).

    MathSciNet  Google Scholar 

  27. I. M. Yaglom, “Curves in symplectic spaces,” Tr. Semin. Vector. Tenzor. Anal., 10, 119–137 (1956).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Chilin.

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 144, Proceedings of the Conference “Problems of Modern Topology and Its Applications” (May 11–12, 2017), Tashkent, Uzbekistan, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chilin, V.I., Muminov, K.K. Equivalence of Paths in Galilean Geometry. J Math Sci 245, 297–310 (2020). https://doi.org/10.1007/s10958-020-04691-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-020-04691-7

Keywords and phrases

AMS Subject Classification

Navigation