Skip to main content
Log in

Schwarz boundary-value problems for solutions of a generalized Cauchy–Riemann system with a singular line

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We consider a generalized Cauchy–Riemann system with a rectilinear singular interval of the real axis. Schwarz boundary value problems for generalized analytic functions which satisfy the mentioned system are reduced to the Fredholm integral equations of the second kind under natural assumptions relating to the boundary of a domain and the given boundary functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Lavrentiev, “A general problem of the theory of quasiconformal mappings of plane domains,” Mat. Sborn., 21, No. 2, 285–320 (1947).

    Google Scholar 

  2. I. N. Vekua, Generalized Analytic Functions, Pergamon Press, New York, 1962.

    MATH  Google Scholar 

  3. B. Bojarski, “Homeomorphic solutions of Beltrami systems,” Dokl. Akad. Nauk SSSR, 102, No. 4, 661–664 (1955).

    MathSciNet  Google Scholar 

  4. B. Bojarski, “Generalized solutions of a system of differential equations of the first order of the elliptic type with discontinuous coefficients,” Rep. Univ. Jyväskylä, 118, 1–64 (2009).

    MathSciNet  Google Scholar 

  5. L. I. Volkovyski, Quasiconformal Mappings [in Russian], Lviv. Univ., Lviv, 1954.

    Google Scholar 

  6. L. G. Mikhailov, A New Class of Singular Integral Equations and Its Application to Differential Equations with Singular Coefficients, Wolters–Noordhoff, Groningen, 1970.

    MATH  Google Scholar 

  7. B. Bojarski, “Some boundary value problems for a system of elliptic type equations on the plane,” Dokl. Akad. Nauk SSSR, 124, No. 1, 15–18 (1958).

    Google Scholar 

  8. A. V. Bitsadze, Boundary Value Problems for Second Order Elliptic Equations, North Holland, Amsterdam, 1968.

    MATH  Google Scholar 

  9. V. N. Monakhov, Boundary-Value Problems with Free Boundaries for Elliptic Systems of Equations, Amer. Math. Soc., Providence, RI, 1983.

    Book  Google Scholar 

  10. B. Bojarski, V. Gutlyanskii, and V. Ryazanov, “On the Dirichlet problem for general degenerate Beltrami equations,” Bull. Soc. Sci. Lett. Lódź, Ser. Rech. Déform., 62, No. 2, 29–43 (2012).

    MathSciNet  MATH  Google Scholar 

  11. M. V. Keldysh, “On some cases of degeneration of an equation of elliptic type on the boundary of a domain,” Dokl. Akad. Nauk SSSR, 77, No. 2, 181–183 (1951).

    Google Scholar 

  12. I. I. Daniliuk, “Research of spatial axisymmetric boundary value problems,” Siber. Math. J., 4, No. 6, 1271–1310 (1963).

    Google Scholar 

  13. S. A. Tersenov, “On the theory of elliptic type equations degenerating on the boundary,” Siber. Math. J., 6, No. 5, 1120–1143 (1965).

    Google Scholar 

  14. R. P. Gilbert, Function Theoretic Methods in Partial Differential Equations, Academic Press, New York, 1969.

    MATH  Google Scholar 

  15. L. G. Mikhailov and N. Radzhabov, “An analog of the Poisson formula for second-order equations with singular line,” Dokl. Akad. Nauk Tadzh. SSR, 15, No. 11, 6–9 (1972).

    Google Scholar 

  16. A. Yanushauskas, “On the Dirichlet problem for the degenerating elliptic equations,” Differ. Uravn., 7, No. 1, 166–174 (1971).

    MATH  Google Scholar 

  17. S. Rutkauskas, “Exact solutions of Dirichlet type problem to elliptic equation, which type degenerates at the axis of cylinder. I, II,” Boundary Value Probl., 2016:183; 2016:182 (2016).

  18. S. Rutkauskas, “On the Dirichlet problem to elliptic equation, the order of which degenerates at the axis of a cylinder,” Math. Model. Analysis, 22, No. 5, 717–732 (2017).

    Article  MathSciNet  Google Scholar 

  19. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 2, Cambridge Univ. Press, Cambridge, 1927.

    MATH  Google Scholar 

  20. H. Bateman, Partial Differential Equations of Mathematical Physics, Dover, New York, 1944.

    MATH  Google Scholar 

  21. P. Henrici, “Zur Funktionentheory der Wellengleichung,” Comment. Math. Helv., 27, Nos. 3–4, 235–293 (1953).

    Article  MathSciNet  Google Scholar 

  22. A. G. Mackie, “Contour integral solutions of a class of differential equations,” J. Ration. Mech. Anal., 4, No. 5, 733–750 (1955).

    MathSciNet  MATH  Google Scholar 

  23. Yu. P. Krivenkov, “On one representation of solutions of the Euler–Poisson–Darboux equation,” Dokl. Akad. Nauk SSSR, 116, No. 3, 351–354 (1957).

    MathSciNet  MATH  Google Scholar 

  24. N. R. Radzhabov, “Integral representations and their inversion for a generalized Cauchy–Riemann system with singular line,” Dokl. Akad. Nauk Tadzh. SSR, 11, No. 4, 14–18 (1968).

    MathSciNet  Google Scholar 

  25. G. N. Polozhii, Theory and Application of p-Analytic and (p, q)-Analytic Functions [in Russian], Naukova Dumka, Kiev, 1973.

    Google Scholar 

  26. G. N. Polozhii and A. F. Ulitko, “On formulas for an inversion of the main integral representation of p-analiytic function with the characteristic p = x k,” Prikl. Mekh., 1, No. 1, 39–51 (1965).

    Google Scholar 

  27. A. A. Kapshivyi, “On a fundamental integral representation of x-analytic functions and its application to solution of some integral equations,” Math. Phys., 12, 38–46 (1972).

    Google Scholar 

  28. A. Ya. Aleksandrov and Yu. P. Soloviev, “Three-Dimensional Problems of the Theory of Elasticity” [in Russian], Nauka, Moscow, 1979.

    Google Scholar 

  29. I. P. Mel’nichenko and S. A. Plaksa, Commutative Algebras and Spatial Potential Fields [in Russian], Inst. of Math. of the NAS of Ukraine, Kiev, 2008.

    Google Scholar 

  30. S. A. Plaksa, “Dirichlet problem for an axisymmetric potential in a simply connected domain of the meridian plane,” Ukr. Math. J., 53, No. 12, 1976–1997 (2001).

    Article  MathSciNet  Google Scholar 

  31. S. A. Plaksa, “Dirichlet problem for the Stokes flow function in a simply connected domain of the meridian plane,” Ukr. Math. J., 55, No. 2, 197–231 (2003).

    Article  MathSciNet  Google Scholar 

  32. J. L. Heronimus, “On some properties of a function continuous in the closed disk,” Dokl. Akad. Nauk SSSR, 98, No. 6, 889–891 (1954).

    MathSciNet  Google Scholar 

  33. S. E. Warschawski, “On differentiability at the boundary in conformal mapping,” Proc. Amer. Math. Soc., 12, No. 4, 614–620 (1961).

    Article  MathSciNet  Google Scholar 

  34. S. A. Plaksa, “On integral representations of an axisymmetric potential and the Stokes flow function in domains of the meridian plane. I, II,” Ukr. Math. J., 53, No. 5, 726–743; No. 6, 938–950 (2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergiy A. Plaksa.

Additional information

Dedicated to the memory of Professor Bogdan Bojarski

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 16, No. 2, pp. 200–214 April–June, 2019.

This research is partially supported by the State Program of Ukraine (Project No. 0117U004077).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plaksa, S.A. Schwarz boundary-value problems for solutions of a generalized Cauchy–Riemann system with a singular line. J Math Sci 244, 36–46 (2020). https://doi.org/10.1007/s10958-019-04602-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-019-04602-5

Keywords

Navigation