Skip to main content
Log in

“Separation of Variables” in the Model Problems of the Diffraction Theory. A Formal Scheme

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

The parabolic equation describes the propagation of localized waves along the boundary with singularities. Some reformulation of the “separation of variables” scheme is presented, which enables us to obtain a rich set of solutions of the corresponding boundary value problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Babich and V. S. Buldyrev, Short-Wavelength Diffraction Theory. Asymptotic Methods, Springer, Berlin (1991).

    Book  Google Scholar 

  2. V. M. Babich and N. Ya. Kirpichnikova, The Boundary-Layer Method in Diffraction Theory [in Russian], Leningrad University, Leningrad (1974).

    Google Scholar 

  3. Yu. A. Kravtsov and Yu. I. Orlov, Caustics, Catasrophes and Wave Fields, Springer, Heidelberg (1999).

    Book  Google Scholar 

  4. A. N. Oraevsky, “Whispering-gallery waves,” Quantum Electron, 32, No 5, 377–400 (2002).

    Article  Google Scholar 

  5. M. M. Popov, “On the problem of whispering gallery waves in the vicinity of a simple zero of the effective curvature of the boundary,” Zap. Nauchn. Semin. LOMI, 62, 197–206 (1976).

    Google Scholar 

  6. M. M. Popov, “Wave fields in the caustic shadow zone near the inflection point of the boundary,” Zap. Nauchn. Semin. LOMI, 89, 246–260 (1979).

    Google Scholar 

  7. V. M. Babich and V. P. Smyshlyaev, “Scattering problem for the Schrödinger equation in the case of a potential linear in time and coordinate. I. Asymptotics in the shadow zone,” Journ. Soviet Math., 32, No. 2, 103–112 (1986).

    Article  Google Scholar 

  8. V. P. Smyshlyaev, “Concentration of the solutions near a limit ray in the neighborhood of an inflection point of the boundary,” J. Soviet Math., 55, No. 3, 1757–1760 (1991).

    Article  MathSciNet  Google Scholar 

  9. A. Ya. Kazakov, “Special function related to the concave–convex boundary problem of the diffraction theory,” J. Phys. A: Math.Gen., 36, No. 14, 4127–4142 (2003).

    Article  MathSciNet  Google Scholar 

  10. A. Ya. Kazakov, “Special function related to the scattering of the whispering gallery mode at a point of local straightening,” J. Math. Sci., 128, No. 2, 2782–2786 (2005).

    Article  MathSciNet  Google Scholar 

  11. F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST Handbook of Mathematical Functions, NIST and Cambride University Press (2010).

  12. K. Husimi, “Miscellanea in elementary quantum mechanics, II,” Progr. Theor. Phys., 9, No. 4, 381–402 (1953).

    Article  MathSciNet  Google Scholar 

  13. A. M. Perelomov and V. S. Popov, “Group aspects of the oscillator problem with variable frequency,” Teoret. Matem. Fiz., 1, No. 3, 360–374 (1969).

    Google Scholar 

  14. C. F. Lo, “Propagator of the general driven time-dependent oscillator,” Phys. Rev. A, 47, No. 1, 115–118 (1993).

    Article  Google Scholar 

  15. Sang Pyo Kim, “A class of exactly solved time-dependent quantum harmonic oscillators,” J. Phys. A: Math. Gen., 27, No. 11, 3927–3926 (1994).

    Article  MathSciNet  Google Scholar 

  16. H. Kanasugi and H. Okada, “Systematic treatment of general time-dependent harmonic oscillator in classical and quantum mechanics,” Progr. Theoret. Phys., 93, No. 5, 949–960 (1995).

    Article  MathSciNet  Google Scholar 

  17. O. Vallee and M. Soares, Airy Functions and Application to Physics, Imperial College Press, London (2010).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ya. Kazakov.

Additional information

Dedicated to the memory of A. P. Kachalov

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 471, 2018, pp. 124–139.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazakov, A.Y. “Separation of Variables” in the Model Problems of the Diffraction Theory. A Formal Scheme. J Math Sci 243, 715–725 (2019). https://doi.org/10.1007/s10958-019-04573-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-019-04573-7

Navigation